Содержание
Введение
1. Состояние вопроса.
1.1 Обзор математических моделей и результатов исследований деформирования и устойчивости сферических оболочек
1.2 Численные методы решения нелинейных нестационарных задач деформирования элементов тонкостенных конструкций
1.3 Выводы из обзора. Цели и структура диссертационной работы
2. Конечноэлементная модель упругопластического деформирования, потери устойчивости и закритического поведения тонкостенных конструкций
2.1 Определяющая система уравнения упругопластического деформирования конструкций
2.2 Методика численного решения задачи
2.2.1 Конечные элементы для решения трехмерных нелинейных задач динамики оболочек
2.2.2 Конечные элементы для решения двумерных нелинейных задач динамики оболочек
2.2.3 Численное моделирование контактного взаимодействия деформируемых тел
2.2.4 Интегрирование определяющей системы уравнений по времени
2.2.5 Консервативное сглаживание численного решения
2.3 Метод численного исследования устойчивости и закритического поведения тонкостенных оболочек
2.4 Программная реализация конечноэлементной модели
3. Решение тестовых задач.
3.1 Анализ точности численного решения задач нестационарного деформирования элементов конструкций
3.2 Численное моделирование упругопластического деформирования стальных образцов при сложном нагружении
3.3 Устойчивость полусферической оболочки при упругопластическом деформировании
3.4 Устойчивость и закритическое поведение упругопластической сферической оболочки при равномерном сжатии
4. Численное исследование устойчивости упругопластических сферических оболочек
4.1 Расчетноэкспериментальный анализ квазистатического и ударного сжатия полусферических куполов
4.2 Конечноэлементный анализ устойчивости и демпфирующих свойств сферических оболочек при квазистатическом и ударном сжатии
4.3 Численное исследование устойчивости усиленного шпангоутом сегмента сферической оболочки при локальном нагружении
Заключение
Список литературы
- Київ+380960830922