Ви є тут

Континуальное описание газокинетических процессов в потоке реагирующей смеси с S/2+O/2

Автор: 
Быстрова Татьяна Владимировна
Тип роботи: 
ил РГБ ОД 61
Рік: 
2589
Артикул:
3262
179 грн
Додати в кошик

Вміст

- 2 -
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ.................................................... 5
ГЛАВА I. ПРОТЕКАНИЕ ГАЗОКШЕТИЧЕСКИХ ПРОЦЕССОВ В СИСТЕМЕ МНОГОУРОВНЕВЫХ МОЛЕКУЛ СО § I. Возбужденно колебательных степеней
свободы молекул СО в химической реакции
СД+О — СО(лг.)+6' ................................... 10
§ 2. Колебательная кинетика.............................. 16
§ 3. Аналитическое описание ............................. 24
§ 4. Постановка задачи................................... 29
Выводы ................................................... 33
ГЛАВА П. ЧИСЛЕННЫЙ РАСЧЕТ ГАЗОКИНЕТИЧЕСКИХ ПРОЦЕССОВ В ПОТОКЕ РЕАГИРУЮЩЕЙ СМЕСИ С^2+02 § I. Структура плоского пламени бедных смесей
С £2+02 над пористой охлаждаемой горелкой .... 34
§ 2. Основные стадии колебательной релаксации
гилервозбужденных молекул ......................... 48
§ 3. Влияние атомарного кислорода на колебательную кинетику молекул СО............................. 57
§ 4. Особенности колебательной релаксации
гиперзозбужденных молекул ......................... 62
Выводы ................................................. 77
ГЛАВА Ш. УРАВНЕНИЕ КОЛЕБАТЕЛЬНОЙ РЕЛАКСАЦИИ МНОГОУРОВНЕВЫХ ДВУХАТОМНЫХ МОЛЕКУЛ § I. Диффузионное приближение для условия
сохранения числа частиц в газокинетической
системе ........................................... 79
§ 2. Дифференциальное приближение для колебательно -коле бательного V-!/ процесса....................... 84
- 3 -
§ 3. Дифференциальное приближение для колебательно-поступательного V ~ Т процесса. Механическая интерпретация процессов ....................... 91
§ 4. Уравнения колебательной релаксации в диффузионном приближении..................................... 97
Выводы ...................................................
ГЛАВА ГУ. ПОСТАНОВКА ЗАДАЧ О КОЛЕБАТЕЛЬНОЙ РЕЛАКСАЦИИ С ИСПОЛЬЗОВАНИЕМ УРАВНЕНИЯ ДИФФУЗИОННОГО ПРИБЛИЖЕНИЯ. НАЧАЛЬНЫЕ И ГРАНИЧНЫЕ УСЛОВИЯ. РАВНОВЕСНЫЕ УСЛОВИЯ.
§ I. Начальные и граничные условия........................105
§ 2. Состояния равновесия..................................ПО
§ 3. Зависимость равновесных решений от параметров ...114
§ 4. Асимптотические варианты уравнения диффузионного приближения .........................................121
Выводы ...................................................127
ГЛАВА У. ЧАСТНЫЕ И ПРИБЛЖЕЫ1ЫЕ РЕШЕНИЯ. АНАЛИТИЧЕСКОЕ ОПИСАНИЕ РЕЛАКСАЦИИ ГИПЕРВОЗБУЖДЕННЫХ МОЛЕКУЛ. КЛАССИФИКАЦИЯ РЕЖИМОВ КОЛЕБАТЕЛЬНОЙ РЕЛАКСАЦИИ МНОГОУРОВНЕВЫХ ДВУХАТОМНЫХ МОЛЕКУЛ § I. Приближенное решение задачи об эволюции
локализованных начальных распределений...............128
§ 2. Автомодельные решения. Описание уширения
распределений гипервозбужденных молекул
по колебательному спектру ...........................136
§ 3. Стационарные решения. Приближенное решение
задачи о релаксации гипервозбудценных молекул в условиях колебательно-поступательного процесса.............................................152
_ 4 -
§ 4. Классификация режимов колебательной релаксации многоуровневых двухатомных молекул ................. 162
Выводы .................................................. 176
ЗАКЛЮЧЕНИЕ.....................................................179
ЛИТЕРАТУРА................................................... 181
ВВЕДЕНИЕ
- 5 -
Интенсивное развитие лазерной техники, выяснение методов воздействия и поиск путей управления процессами, которые ответственны за образование активной среды лазеров, вызвало в последние годы интерес к изучению газовых систем, далеких от состояния термодинамического равновесия. В случае молекулярных лазеров изучение возможностей создания инверсной заселенности связано с анализом функций распределения молекул по колебательным уровням. Важное место среди молекулярных лазеров занимают химические лазеры на двухатомных молекулах, в которых в результате химической реакции происходит накачка энергии на верхний колебательный уровень молекулы. Одним из перспективных направлений в настоящее время представляется получение лазерного излучения от реагирующих газовых потоков смеси сероуглерода СЛд с кислородом О2, в которых образуются молекулы окиси углерода СО(гг) с инверсной заселенностью на группе колебательных уровней гг =б*-13.
Важным этапом теоретического изучения условий образования инверсной заселенности колебательных уровней СО(/2 ) в реагирующем потоке С^2+0р является построение и анализ упрощенных моделей, определяющих химические и релаксационные процессы. Если характерное время образования возбужденных молекул СО{п.) мало, а времена изменения других внешних параметров велики по сравнению с характерными временами переноса энергии в молекулярной системе, то возможно изолированное рассмотрение процессов химической наработки молекул СОС^) с учетом газодинамических и диффузионных процессов, происходящих в реальных лазерных системах, и колебательной кинетики с мгновенным источником неравновесных молекул при постоянном составе и температуре. При этом особый интерес представляет исследование функций распределения
- 6 -
аналитическими методами, позволяющими представить роль тех или иных релаксационных процессов, а также учесть наглядным образом влияние различных физических факторов (температуры, давления, концентраций отдельных компонент и т.д.). Если функция распределения заселенностей молекул плавно изменяется от уровня к уровню и вероятности колебательно-колебательного V" V обмена быстро убывают с ростом разности состояний сталкивающихся молекул, то колебательную релаксацию удобно описывать уравнением в частных производных в непрерывном пространстве колебательных чисел (уравнением диффузионного приближения типа Фоккера-Планка).
В настоящей работе развивается аналитический подход к описанию многоуровневых колебательно возбужденных молекул на примере молекулы СО(/г), образуемой в химической реакции С £ +0 -~С0(/г)+.б* . В основу описания процесса положено уравнение в частных производных - уравнение диффузионного приближения, справедливое во всем квантовом пространстве.
Диссертация состоит из пяти глав, заключения и списка цитируемой литературы. Каждая глава сопровождается списком основных результатов. Вводная глава I посвящена обзору литературных данных о газокинетических процессах, протекающих в системе молекул СО, и основных теоретических результатов, полученных пр-1 изучении колебательной релаксации многоуровневых молекул. В § I излагаются данные о процессах накачки молекул СО на высок®1 колебательный уровень. В § 2 представлены данные о колебательной кинетике. В § 3 проводится обзор результатов аналитического исследования колебательной релаксации многоуровневых двухатомных молекул. В § 4 обсуждается постановка задачи исследования.
В главе П излагаются результаты численного расчета газокинетических процессов в потоке реагирующей смеси С5>2+02. В § I исследована структура плоского пламени бедных смесей С^+С^
- 7 -
над горелкой, используемой для получения непрерывного лазерного излучения. В § 2 приведены результаты расчета колебательной кинетики молекул СО для начального распределения, заданного в виде 8 -функции на 13 колебательном уровне, и проанализированы основные стадии процесса. В § 3 исследовано влияние аномально быстрой колебательно-поступательной У~Т релаксации при взаимодействии молекул СО с атомарным кислородом. В § 4 обсуждаются особенности колебательной релаксации гипервозбувденных двухатомных молекул.
В главе Ш приводится последовательный вывод уравнения в частных производных - уравнения диффузионного приближения. В § I получено интегральное условие сохранения числа частиц. В § 2, 3 приводится последовательный вывод членов дифференциального приближения для одноквантовых V~ V и У"Т процессов. В § 4 приводятся различные форлы записи уравнения диффузионного приближения. Демонстрируются интегральные свойства газокинетической системы в рамках континуального описания колебательной релаксации.
В главе 1У рассмотрена постановка задач колебательной релаксации с использованием полученного уравнения. В § I формули-руются основные начальные и граничные условия для типичных задач колебательной релаксации. Анализируется вопрос о вырождении уравнешш на нижней границе спектра. В § 2, 3 исследуются состояния равновесия системы. В § 4 на основе методов асимптотического анализа, типичных для исследования уравнений в частных производных, получены различные упрощенные варианты уравнения диффузионного приближения.
Глава У посвящена описанию колебательной релаксации гипер-возбужденных двухатомных молекул с помощью частных и приближенных решений уравнения диффузионного приближения. В § I получено
- 8 -
приближенное решение задачи о релаксации распределений, локализованных на узкой группе высоких колебательных уровней. В § 2 исследуются автомодельные решения упрощенного варианта уравнения. Описывается уширение распределений по колебательным уровнял в случае релаксации гипервозбувденных молекул. В § 3 получено приближенное решение задачи о колебательной релаксации ги-лервозбужденных молекул в условиях колебательно-поступательного У~Т процесса. В § 4 проводится качественный анализ колебательной релаксации изолированной системы при импульсном возбуждении. Получены критерии протекания режимов колебательной релаксации в случаях сильно и гипервозбужденных систем двухатомных молекул.
В заключении диссертации форлулируются основные полученные результаты.
Основные результаты диссертации опубликованы в следующих работах:
1. Быстрова Т.В., Либрович В.Б. Структура плоского пламени бедных смесей над пористой охлаждаемой горелкой. - ФГВ,
1977, № 4, с.512-521.
2. Петрова Т.В., Сафарян М.Н. О влиянии атомарного кислорода
на колебательную релаксацию в системе “ Письма в
ЖТФ, 1978, т.4, с.984-988.
3. Шстрова Т.В. Особенности релаксации сильно возбужденных двухатомных молекул. - Тезисы докл. УТ Всесоюзн. конф. по динамике разреж. газов, Новосибирск, 1979, с.123.
4. БЫстрова Т.В. Колебательная релаксация в системе сверхвозбуж-
денных двухатомных молекул. - ФГВ, 1980, № 3, с.78-81.
5. Быстрова Т.В. К диффузионному описанию колебательной релаксации двухатомных молекул. - Тезисы докладов на Ш Всесоюзн. симп. по лазерной химии, Звенигород, 1982, с.28.
- 9 -
6. Быстрова Т.Б. Автомодельные режимы "расплывания" колебательной функции распределения двухатомных молекул. - Хим. физика, 1983, № 8, с.1015-1017.
7. Быстрова Т.В. Приближенное решение задачи о функции распределения, локализованной в узкой области колебательных чисел двухатомных молекул. - Хим. физика, 1984, т.З, № 9, с.1333-1335.
8. Шстрова Т.В. К континуальному описанию колебательной релаксации многоуровневых двухатомных молекул. - М., 1984, 52 с. (Препринт/Институт проблем механики АН СССР, № 238).
- 10 -
ГЛАВА I. ПРОТЕКАНИЕ ГАЗОКИНЕТИЧЕСКИХ ПРОЦЕССОВ В СИСТЕМЕ МНОГОУРОВНЕВЫХ МОЛЕКУЛ СО
§ I. Возбуждение колебательных степеней свободы молекул СО в химической -реакции С.? +0-*-С0(^)+.£
Основными способами селективного "разогрева" колебательных степеней свободы молекул газа, то есть создания запаса колебательной энергии в системе, превосходящего равновесное значение, являются электрический разряд, газодинамическое охлаждение при истечении газов из отверстий и сопел, химические реакции. Особое место в ряде таких существенно неравновесных систем занимают двухатомные газы, в которых возбуждение происходит за счет энергии экзотермических химических реакций. В основном это обменные реакции с участием атомов Н, О, А/ , £ , атомов галогенов и щелочных металлов. Химическим газофазным реакциям, в которых обнаружено колебательное возбуждение и найдены конкретные распределения молекул-продуктов по колебательным уровням, посвящен ряд обзоров и монографий /1-6/, а также большое число оригинальных работ /7-20/. Типичными чертами химического возбуждения колебательных степеней свободы двухатомных молекул являются:
а) наличие абсолютной инверсии заселенностей; б) большая доля энергии химической реакции, идущая на возбуждение колебаний; в) достаточно высокая скорость химической реакции по сравнению со. скоростью релаксационных процессов. Последнее условие обеспечивается обычно малыми энергиями активации и нормальными стери-ческими множителями этих реакций. Указанные свойства обусловливают использование большинства таких реакций для создания активных сред в химических лазерах /21-23/. Наиболее подходящими для лазерной накачки оказались реакции образования галогеноводо-родов, в которых доля химической энергии, идущая в колебательные
- II -
степени свободы молекул-продуктов, составляет примерно 3060$. При этом в процессе реакций образуются распределения с максимумами, расположенными на 05 колебательных уровнях, при общем числе уровней в молекуле, равном 20-гЗО, что соответствует достаточно высокому удельному запасу квантов в этих системах.
Важное место среди химических реакций накачки занимает реакция взаимодействия радикалов С -У с атомарным кислородом:
в которой основная часть энергии химической реакции Л Н (~80$) идет на возбуждение колебаний молекул СО. Рис.1.1 иллюстрирует экспериментально наблюдаемые в этой реакции колебательные распределения СО(-^г). Как видно, в большинстве случаев эти распределения имеют максимальное значение при п =12 или 13 и резко спадают в обе стороны, так что заселенности уровней при а < 5 и п > 20 можно считать равными нулю. Как показано в работе /15/, распределения, которые обнаруживают значительные заселенности на нижних уровнях, являются результатом протекания реакции
Реакция (І.І.2), также как и реакция (І.І.І), приводит к образованию возбужденных молекул СО. Однако распределение их по колебательным уровням в этом случае по форме напоминает больц-мановское: оно имеет максимум на основном колебательном уровне и плавно спадает с увеличением номера уровня. Если химические реакции (І.І.І) и (І.І.2) протекают параллельно, имея близкие скорости, то вероятности образования возбужденных молекул СО складываются, образуя сложные нелокализованные распределения. Однако, поскольку константа скорости реакции (І.І.І) более, чем на порядок превышает константу скорости реакции (І.І.2) /24/,
О+СЭ — СО (а) ч-З
Л Н =84,7 ккал/моль,(І.І.І),
С32 + 0С 0 (гі) Ч-Яг
(І.І.2)
- 12 -
&
CDtn)
n CD(nmax)
1.1
1
0.9
0&
0.6
0.5
0.2 0.1
О
10 13 15
20
П
Рис.1.1. Распределения молекул СО по колебательным уровням, образуемые в химических реакциях; ггтах соответствует максимуму распределения на высоких уровнях.
- 13 -
то вкладом второго процесса в распределение ССК/г) обычно пренебрегают.
Как видно, при колебательном возбуждении молекул СО, создаваемом реакцией (I.I.I), наиболее сильно проявляются указанные выше свойства химической накачки двухатомных молекул. Имеет место локализация функции распределения на уровнях 5 ^ о. ^ 20 при общем числе колебательных уровней в молекуле N =81 /25/; абсолютная инверсия создается на группе высоких колебательных уровней п. =6=13, а заселенности низких состояний при этом практически равны нулю. Удельный запас колебательной энергии в системе очень высок и соответствует 12=13 квантам, приходящимся на одну молекулу СО. Эта величина более, чем в десять раз, превышает соответствующие значения энергий, создаваемых в системе молекул СО в результате электрического или газодинамического способов накачек, в которых удельный запас квантов в системе не превышает единицы.
Поэтому целесообразно выделить такие системы молекул в отдельный класс. Будем в дальнейшем называть их гипеввозбукденны-ми системами, в отличие от сильно возбужденных систем /26/, в которых хотя и имеет место сильная неравновесность, однако средний запас колебательной энергии не больше энергии первого колебательного уровня молекулы.
Наличие высокой степени инверсной заселенности на колеба-тальных уровнях позволяет отнести реакцию (I.I.I) к ряду наиболее перспективных с точки зрения создания активной среды лазеров. Важным фактором, определяющим возможность ее использования в химических лазерах, является высокая скорость И/\ (а) образования молекул СО в состояниях п :
Wh (п) =Х°(п) Wh d.i.3)
Здесь - брутто-скорость наработки молекул СО в химическом
- 14 -
процессе, Х.° - функция распределения молекул СО по колеба-
тельным уровням, формируемая в первичном акте реакции (1.1.1) и нормированная к единице:
Хп=~$г7ГГ’ [СО] = £[СОГп)], (1.1.4),
п [СО] - - п
где Со7 и [со(п)1 - общее число молекул СО и доля их в состоянии п , соответственно.
Для обеспечения высокой скорости И/А в химических лазерах обычно используют реакцию атомов кислорода, подаваемых из источника активных центров со смесью газообразных сероуглерода С^2 и кислорода 02 /27-30/. Образующаяся при этом молекула С .7 затем реагирует с атомарным кислородом по реакции (1.1.1).
При инициировании непрерывной подачей активных центров 0 в поток реагирующей смеси Скинетику образования СО(п) определяют следующие три наиболее быстрые реакции:
С52+0 — С5 +30
с5+о-~сом*!; (1.1.5)
кг=г,1.ю"'е"!&— /32/
* МОЛЬ сек
О +0г -30 +О
к3 = 1,4.10* тщСх*/33/
Характерное время образования С0(/^), вычисленное по кинетической схеме (1.1.5), является минимально возможным и представляет собой предел, к которому стремится реальное время образования С0(/г) при очень быстром перемешивании реагентов. Легко
кСп
оценить характерное время этого кинетического режима Считая концентрацию атомов серы 5 квазистационарной:
- 15 -
77^- = кг [СЯ][0] [57 [0,7=
получаем для скорости гибели подаваемого в поток атомарного кислорода следующее выражение:
-5Г
откуда
[0]^[0]°ехР(-/с1[С5,П),
где - время, прошедшее С момента смешения, [о]°, [с£2]° -
начальные концентрации атомов 0 и С £р. Так как характерное вре-„ксп
мя по порядку величины равно времени уничтожения ведуще-
го компонента 0, то
Т£П ~*/к, [СЯг 1° <1Л-6>
Ддя типичных парат,тетров химических СО лазеров на смешении реагентов концентрация Гс5о]°=2.5 Ю15 1/см3. Используя (1.1.6),
/ссп й
получаем с,^ ~ 10 с.
Другим механизмом образования СО('г) в реально действующих СО лазерах служит диффузионное горение смеси С 32+®2 в потоке над плоской горелкой /35-37/. Так как в этом случае не производится подачи извне активных центров, то для обеспечения стационарного режима горения кинетическую схему (1.1.5) следует дополнить химической реакцией, ведущей к образованию недостающего в
(1.1.5) одного моля атомарного кислорода:
5 о +ог /Го_, •+• о
„б£ (1Л*7)
/с, =3.5 10*1 е см3/моль с /34/
Имеющее место в этом режиме характерное время можно по-
лучить, зная структуру зоны пламени над горелкой и линейный масштаб зоны образования молекул СО вдоль по потоку.
- 16 -
Для моментов времени, больших времени химического образования СО (л ), основную роль в создании инверсии заселенности начинают играть релаксационные процессы. Для их исследования надо решать задачу о колебательной релаксации - систему газокинетических уравнений баланса для заселенностей колебательных уровней молекулы СО. В качестве начального условия должно быть задано распределение СО (/г), формирующееся на стадии в результа-
те взаимодействия химических и релаксационных процессов. В предельном случае очень быстрой химической реакции начальным условием задачи колебательной кинетики является экспериментально наблюдаемое распределение Х°а .
§ 2. Колебательная кинетика
Возбуждение внутренних степеней свободы сопровождается релаксацію иными процессами, стремящимися вернуть систему в состояние термодинамического равновесия. Для системы колебательно возбужденных молекул СО основными релаксационными процессами являются следующие:
а) одноквантовый колебательно-колебательный У~\/ обмен молекул СО
СО (т-1) +СО(п+1) СО 1т) + СО (а)
б) колебательно-поступательный |/-Т обмен
СО (п+1) + М СО (п) +М
М =С0, 0, 02, йг
- 17 -
С0(т-4) +С0 (п+2) СО(т)+СО(п.)
г) радиационное излучение
С0(п+1) — СО(п)
Среды химических лазеров на смеси В К0Т°РЫХ Б03~
бужденные молекулы СО образуются в результате ряда элементарных химических актов, обычно представляют собой многокомпонентные газовые смеси. Поэтому исследование колебательной кинетики, вообще говоря, следует проводить с учетом колебательно-колебательного /"^обмена возбужденных молекул СО с теш компонентами потока, для которых скорости У~У процессов соизмеримы со скоростями рассмотренных выше основных процессов. Таковыми являются молекулы О2, С 3 , 3 0, 5 С>2, ОС £ , а также используемая для повышения мощности химических СО лазеров /38-39/ молекула N 20. Кроме того, химические процессы и процессы колебательной релаксации протекают одновременно, и в целом необходимо их совместное рассмотрение. Однако для выявления основных закономерностей процесса колебательной релаксации в системах молекул с очень высокими степенями начального возбуждения представляет интерес отдельный анализ колебательной кинетики в условиях гипервозбуждения системы при постоянной температуре и учете основных релаксационных процессов а)-г).
Константы скоростей столкновительных процессов представляют собо^произведение вероятности столкновения двух молекул в единицу времени на вероятность обмена данного квантового перехода при столкновении. Число столкновений молекул СО с произвольной моле-