РАЗДЕЛ 2
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И АНАЛИЗ УСТАНОВИВШИХСЯ РЕЖИМОВ РАБОТЫ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ С КОРОТКОЗАМКНУТЫМ РОТОРОМ ПРИ НАЛИЧИИ В НИХ ДЕФЕКТОВ
Немногочисленные методы диагностического контроля технического состояния, определения работоспособности и поиска повреждений электрических машин оказываются малоэффективными для применения на работающей машине и не могут предупреждать о возникновении неисправностей.
Главная трудность в решении данной задачи заключается в том, что пока недостаточно исследованы отдельные неисправности электрических машин на предмет получения диагностической информации и не определены специальные информативные параметры или признаки (диагностические параметры), характеризующие изменение величин и характеристик электромагнитного, вибрационного и акустического процессов их функционирования при возникновении соответствующих неисправностей [19].
Целью данного раздела является математическое моделирование установившихся режимов работы АД с КЗР при наличии различных видов дефектов (обмоток статора и ротора, а также механической части) и определение зависимостей диагностических параметров от степени развития рассматриваемых дефектов.
2.1. Повреждения стержней короткозамкнутого ротора
Для исследования установившихся режимов работы АД при наличии поврежденных стержней КЗР используется математическая модель [55] для расчета мгновенных значений токов и напряжений, составленная на основе полных дифференциальных уравнений в фазных координатах статора (a, b, c) и в фазных координатах ротора (1, 2, ..., n) с учетом того, что глубокопазный ротор представлен в виде эквивалентного двухклеточного. При этом количество фаз в обмотке ротора равняется числу короткозамкнутых стержней ротора. Отличительной особенностью данной модели является то, что она может быть применена для глубокопазных АД с учетом явления вытеснения тока в роторе. При разработке математической модели были приняты следующие допущения:
- не учитывается насыщение магнитопровода;
- не учитываются потери в стали;
- принимается, что фазные обмотки выполнены одинаковыми.
Исходными данными для использования математической модели являются параметры двухконтурной схемы замещения АД, расчет которых производится по данным АД, полученным по результатам эксплуатации и испытаний, в соответствии с методикой, приведенной в работе [77]. Для оценочных расчетов при математическом моделировании использованы каталожные данные АД.
На основании анализа повреждений электродвигателей (см. п.1.1) была выдвинута гипотеза об универсальности использования в качестве диагностического параметра для выявления различных видов дефектов АД тока ОП.
Для отстройки от конструктивной несимметрии АД (ток ОП двигателя при отсутствии явных дефектов обмотки ротора), несимметрии питающего напряжения, а также коэффициента загрузки электродвигателя, в качестве диагностического параметра удобнее использовать относительное содержание тока ОП в токе статора АД - коэффициент ОП по току k2i, определяемый по выражению:
, (2.1)
где I1, I2 - действующие или амплитудные значения составляющих тока соответственно ПП и ОП.
Кроме того, предложено упомянутый выше критерий (2.1) дополнить еще одним - критерием наклона характеристики kp, характеризующим крутизну механической характеристики АД в области рабочих скольжений. Так как при наличии оборванных стержней КЗР скольжение s АД увеличивается при той же величине нагрузки, то указанное отношение будет уменьшаться по сравнению с его значением для исправного двигателя. Такой же характер изменения крутизны указанной характеристики будет иметь место и при понижении напряжения. Поэтому вводится коррекция предлагаемого критерия с учетом квадрата отношения номинального напряжения и напряжения статора в опыте. В относительных единицах выражение для критерия наклона характеристики имеет вид
, (2.2)
где Pном, sном, Uном - номинальные значения соответственно потребляемой АД активной мощности, скольжения и напряжения статора АД;
P, s, U - определяемые по результатам контроля параметров рабочего режима соответственно потребляемая АД активная мощность, скольжение и напряжение статора АД.
Предложено также для диагностирования дефектов КЗР использовать обобщенный параметр диагностирования АД с КЗР - коэффициент его исправного состояния, определяемый как
, (2.3)
где - коэффициент несимметрии токов;
сi, cp - весовые коэффициенты, равные 1(3, которые в дальнейшем могут быть уточнены на основе опыта эксплуатации электродвигателя.
Для исправного двигателя kд=1. Отклонение этого параметра в сторону понижения от единицы свидетельствует о наличии дефектов КЗР.
Путем математического моделирования проведена оценка информативности диагностических параметров (коэффициента ОП по току k2i, критериев kp и kд) и рассчитаны зависимости этих параметров для различных типов АД 6-10 кВ с КЗР. На рис.2.1-2.3 приведены зависимости диагностических параметров от количества оборванных стержней КЗР, полученные для АД типа ДАЗО-13-67-6МУ1.
Исследуемый АД имеет следующие каталожные данные [82]: Pном = 630 кВт; Uном = 6 кВ; Iном = 74 А; Sном = 0,015; nном = 985 об./мин.; ?= 0,925; cos ?ном = 0,89; Кпуск = 6,1; Мпуск = 1,0; Ммакс = 2,6; количество стержней КЗР - 86.
По каталожным данным рассчитаны параметры двухконтурной схемы замещения АД: Xm = 2,7 o.e.; X?s = 0,055 o.e.; Rr1 = 0,016 о.е.; Rr2 = 0,125 o.e.; X?r1 = =0,178 о.е.; X?r2 = 0,274 о.е.
Рис.2.1. Зависимости коэффициента ОП по току k2i от количества оборванных стержней КЗР nоб.ст. в рабочем режиме АД типа ДАЗО-13-67-6МУ1
Частота тока ОП f2, вызванного обрывом стержней КЗР АД, является функцией скольжени