2
СОДЕРЖАНИЕ
Стр.:
ВВЕДЕНИЕ...................................................6
ГЛАВА 1. МЕТОДЫ МАТЕМАТИЧЕСКОГО ОПИСАНИЯ ДИНАМИКИ ГЕНЕРАЦИИ ТВЕРДОТЕЛЬНЫХ ЛАЗЕРОВ (литературный обзор)...............................22
1.1 Основные уравнения..............................22
1.2 Математическое описание динамики генерации связанных лазеров....................................27
1.3 Математическое описание генерации волн на динамических решетках................................33
ГЛАВА 2. ИССЛЕДОВАНИЕ ДИНАМИКИ ГЕНЕРАЦИИ
ИАГ:Ыс13+—ЛАЗЕРА С ЛИНЕЙНЫМИ ОПТИЧЕСКИ СВЯЗАННЫМИ РЕЗОНАТОРАМИ В РЕЖИМЕ ПАССИВНОЙ МОДУЛЯЦИИ ДОБРОТНОСТИ..................42
2.1 Схема линейных оптически связанных резонаторов... .43
2.2 Математическая модель...........................43
2.3 Результаты численного анализа динамики генерации лазерной системы с оптически связанными резонаторами в режиме пассивной модуляции добротности.............49
2.4. Исследование зависимости энергетических и временных параметров излучения связанных резонаторов с модулированной накачкой от начального пропускания Т0 ПЛЗ на кристалле 1лР.................................53
2.5. Исследование зависимости энергетических и временных параметров излучения связанных резонаторов от ненасыщенного коэффициента усиления активной среды К0..58
2.6. Результаты анализа на фазовой плоскости динамики генерации ИАГ:Ыс13+-лазера с оптически связанными резонаторами в режиме пассивной модуляции
добротности...................................61
Выводы ко второй главе........................63
ГЛАВА 3. ИССЛЕДОВАНИЕ ДИНАМИКИ ГЕНЕРАЦИИ
ИМПУЛЬСНО-ПЕРИОДИЧЕСКОГО ИАГ:Ыс13+—ЛАЗЕРА С ИНТЕРФЕРОМЕТРОМ САНЬЯКА В КАЧЕСТВЕ КОНЦЕВОГО ОТРАЖАТЕЛЯ В РЕЖИМЕ ПАССИВНОЙ МОДУЛЯЦИИ ДОБРОТНОСТИ...............66
3.1 Оптические схемы с пассивным затвором внутри и вне трехзеркального интерферометра...................67
3.2 Постановка задачи и основные уравнения.......70
3.3 Исследование способов приведения балансных уравнений к безразмерному виду....................74
3.4 Исследование энергетических и временных параметров лазерного излучения...............................78
3.5 Влияние потерь в кристалле 1лР:Р2- на энергетические параметры ИАГ:Ыс13+-лазера с интерферометром Саньяка в качестве концевого огравжателя..................82
3.6 Оптимизация режимов работы схем 1 и 2 для различных начальных коэффициентов усиления активной среды Ко и
начального пропускания 1лГ:/*У"...............85
Выводы к третьей главе........................90
ГЛАВА 4. САМОМОДУЛЯЦИЯ ИЗЛУЧЕНИЯ В
ДИФРАКЦИОННО-СВЯЗАННЫХ ПЕТЛЕВЫХ РЕЗОНАТОРАХ ПРИ ОБРАЩЕНИИ ВОЛНОВОГО ФРОНТА В ИАГ:Ш3+-АКТИВНЫХ СРЕДАХ..............92
4.1. Оптическая схема ИАГ: Кс13' - лазера с дифракционносвязанными петлевыми резонаторами.................94
4
4.2. Математическая модель генерации в дифракционно связанных петлевых резонаторах с самообращением волнового фронта ча основе теории связанных волн . . .96
4.3. Математическая модель генерации в дифракционно связанных петлевых резонаторах с самообращением волнового фропта.на основе одномерных балансных уравнений в частных производных.........................101
4.4. Исследование механизма самомодуляции добротности в дифракционно-связанных петлевых резонаторах с обращением волнового фронта.............................107
4.5. Исследование зависимости энергетических и временных параметров излучения модулированного излучения дифракционно-связанных ОВФ-резонаторов от ненасыщенного коэффициента усиления активной среды К0.................112
4.6. Зависимость коэффициентов отражения дифракционных решеток петлевых дифракционно-связанных резонаторов от ненасыщенного коэффициента усиления активной среды К0 .и уровня входного шумового сигнала........................117
Выводы к четвертой главе............................118
ГЛАВА 5. ИССЛЕДОВАНИЕ ДИНАМИКИ ГЕНЕРАЦИИ ССС:Ыс1-ЛАЗЕРА В РЕЖИМЕ МОДУЛЯЦИИ ДОБРОТНОСТИ ПРИ ВНУТРИРЕЗОНАТОРНОЙ ОПТИЧЕСКОЙ НАКАЧКЕ ГАЗА.......................................120
5.1 Схема лазера с внутрирезонаторной накачкой...........122
5.2 Кинетические уравнения молекулярного газового НВг -лазера и ССС:Ы(1-лазера..........................................124
5.3 Исследование временной динамики спектра излучения твердотельного лазера на кристалле (КЮДОё...............128
5.4 Исследование эффективности оптической накачки газа излучением кристалла от концентрации газа Ьтг для различных схем оптической накачки.................................130
5
5.5 Исследование зависимости энергетических параметров
лазерного излучения ССС:Ы<1 -лазера и НВг молекулярного газового лазера от уровня вредных и полезных потерь в ОСЮ.'Ыс! - лазере для различных схем оптической накачки.. 136
5.6 Исследование зависимости энергетических параметров
излучения твердотельного С(Ю:Ы<1 лазера и молекулярного газа от ненасыщенного коэффициента усиления кристалла К0 при внутрирезонаторной накачке............................141
5.7 Исследование зависимости энергетических параметров
излучения кристалла и газа от степени фокусировки излучения кристалла е/кТ при внутрирезонаторной накачке............143
ВЫВОДЫ К ГЛАВЕ 5...................
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ЗАКЛЮЧЕНИЕ.........................
144
146
167
6
ВВЕДЕНИЕ
По мере развития лазерной техники все большее значение приобретают исследования динамики процессов, определяющих физическую картину работы лазера в различных режимах [1-9]. Это связано с необходимостью создания лазеров с заданными значениями параметров излучения - энергии в импульсе, длительности импульса, средней и пиковой мощности, частоты следования импульсов [10-11]. Большое практическое значение имеет задача создания сверхмощных лазеров [12]. Исследования динамики процессов в лазерах являются основой для решения проблемы управления параметрами лазерного излучения, обеспечение его устойчивости и стабильности [13-15]. Они крайне важны для интерпретации нелинейно-оптических явлений Г16]. Реализуемые на практике режимы генерации лазеров являются, как правило, импульсными [17-18], их описание принципиально невозможно без рассмотрения динамики процессов.
В процессе свободной генерации отклонения от порогового значения не выходят за пределы нескольких процентов и пиковая мощность излучения твердотельных лазеров ограничена десятками киловатт. Болес мощные гигантские импульсы удается получить в тех случаях, когда развитие генерации задерживается на время, необходимое для достижения высокой степени инверсии [19]. Это достигается модуляцией добротности резонатора [20].
Все известные методы модуляции добротности подразделяются на активные и пассивные [21,22]. К активным относятся модулирующие устройства, меняющие величину потерь по заданному закону или в соответствии с внешним управляющим сигналом. Одним из перспективных методов модуляции добротности резонатора является выходное зеркало с регулируемым
7
отражением на основе пьезоэлектрически сканируемого интерферометра Фабри-Перо [23,24]. Активные затворы обеспечивают более однородную по сравнению со свободной генерацией структуру пучка. К недостаткам активной модуляции следует отнести ограниченную выходную мощность, наличие внешнего источника питания, высокую стоимость, небольшой ресурс работы.
Пассивные модулирующие элементы управляются непосредственно полем излучения, имеющемся в резонаторе лазера. Генерация гигантского импульса при пассивной модуляции добротности начинается в тот момент времени, когда, обусловленная накачкой плотность инверсной населенности, постепенно возрастая, достигнет порогового значения, определяемого потерями в резонаторе с непросветленным фильтром [25,26]. Наличие просветляющегося фильтра увеличивает скорость включения добротности и улучшает параметры излучения. В последнее время повышенный интерес проявляется к
твердотельным лазерам на неодимсодержащих средах [27].
Исследования, выполненные в Ковровской Государственной Технологической Академии и научном центре лазерных материалов и технологий Института общей физики РАН [28-30] показали, что наилучшим образом требованиям высокой пространственной
яркости и малой расходимости излучения удовлетворяют УАС:Ыс1и -лазеры с пассивными затворами на окрашенных щелочно-галоидных кристаллах (ЩГК). Особенно выделяется кристалл Он может использоваться и как пассивный затвор
неодимовых лазеров с длиной волны 1,06 мкм [31,32] и как активная среда перестраиваемых лазеров [33]. При использовании кристаллов в качестве пассивных затворов они могут действовать и как селекторы поперечных и продольных мод резонатора [34] и как частичные поляризаторы. Высокая термическая и оптическая
8
стойкость р2 центров окраски, хорошие теплофизические свойства, малая гигроскопичность обуславливает широкие возможности его применения для модуляции мощных технологических лазеров на неодимсодержащих средах, где применение других методов модуляции невозможно или неэффективно.
Эффективным способом создания еще более мощных лазерных устройств с высокой направленностью и высокой спектральной плотностью излучения являются оптически связанные лазеры [35-39].
Принцип модульного построения лазерных систем позволяет получить мощное излучение с сохранением высокого качества излучения, присущего одному модулю. Когда лазерные модули дают несфазированное некогерентное излучение, максимальная мощность на мишени в N раз больше мощности, получаемой от отдельного модуля. Когда излучение всех модулей когерентно, максимальная мощность на мишени в Ы2 раз больше, чем для отдельного модуля.
Можно выделить три способа частотной и фазовой синхронизации набора лазеров. В одном из них синхронизация достигается путем сравнения сигнала каждого из лазеров с эталонным сигналом. Во втором методе сигнал одного лазера инжектируется во все лазеры набора [40-42]. Например, сигнал проходит через набор усилителей. Третий метод синхронизации, являющийся предметом рассмотрения настоящей работы, основан па введении оптической связи между лазерами набора [43-44]. Сложная конфигурация усиливающей среды, большое количество отражающих поверхностей образует своеобразный
пространственный фильтр для общего поля, что и приводит к выделению по потерям небольшого числа мод [45-47].
Проведенными к настоящему времени исследованиями достаточно полно изучена структура коллективных мод связанных
лазеров [48], установлены основные факторы, влияющие на их устойчивость. Однако целый ряд вопросов, имеющих как фундаментальный, так и практический интерес, остаются неизученными. К ним относятся исследования динамики связанных генераторов. В системе даже двух оптически связанных лазеров наблюдается сложное динамическое поведение интенсивности излучения [49]. До конца неизученным остается вопрос о влиянии различных параметров отдельных лазеров на их временные и энергетические характеристики.
Актуальной представляется разработка математической модели оптически связанных через полупрозрачное зеркало технологических УАО:Мб лазеров с пассивной модуляцией добротности кристаллом 1дР:р2*и активной модуляцией отражения зеркала связи, что позволило бы управлять излучением подобных технологических лазеров по заданному закону, а также оптимизировать практические режимы их работы и предсказать параметры генерации в тех ситуациях, когда экспериментальные исследования невозможны или затруднены.
Наряду с традиционными лазерами, основанными на процессах вынужденного излучения в активных средах, были созданы генераторы на нелинейных эффектах [50-54] четырехволновом смешении и вынужденном рассеянии Манделынтама-Бриллюэна. В основе действия таких лазеров лежит новый механизм усиления когерентного излучения - перекачка энергии между волнами на светоиндуцированных динамических решетках, записываемых в нелинейной среде самими интерферирующими волнами [55-56]. Эти генераторы обладают уникальными свойствами, отсутствующими у всех известных лазеров — возможностью генерировать пучки с обращенным волновым фронтом (ОВФ) [57]. Адаптивные лазерные системы с ОВФ зеркалами обладают большими потенциальными
10
возможностями для достижения высокой яркости излучения благодаря динамической компенсации фазовых искажений в активной среде и в оптических элементах [58-62].
Метод ОВФ при четырехволновом взаимодействии является универсальным для различных диапазонов длин волн [63-68] в отличии от методов ОВФ при вынужденном рассеянии Мандельштама - Бриллюэна [69-71] или при вынужденном комбинационном рассеянии [72]. Это обусловлено наличием эффективных нелинейностей, используемых при записи голографического ОВФ-зеркала [73]: тепловой нелинейности [74-75], нелинейностью насыщения усиления в активной среде [76], нелинейности, связанной с различием поляризуемости возбужденных и невозбужденных атомов (изменения показателя преломления)[77-79]. Тепловая нелинейность является наиболее универсальной. В ее основе лежит изменение показателя преломления среды при изменении ее температуры. Поглощение средой энергии излучения с последующей безызлу чателыюй релаксацией приводит к повышению температуры среды, что ведет к увеличению энергии колебательных, вращательных и поступательных степеней свободы, что, в свою очередь, вызывает изменение поляризуемости среды, а, следовательно, и ее показателя преломления. Одной из причин невысокого качества ОВФ на тепловой нелинейности является сравнительно большая инерционность процесса. Для коротких импульсов излучения в режиме модулированной добротности тепловая нелинейность как более инерционная в процессе четырех волнового смешения уступает по эффективности нелинейности коэффициента усиления. Изменение показателя преломления при насыщении усиления в активной среде [80] связано с тем, что изменение населенности возбужденных уровней АС приводит к различной поляризуемости этих уровней. Знание изменения показателя преломления в
11
лазерных кристаллах необходимо для выявления доминирующего механизма формирования динамических голографических решеток [81] в лазерных кристаллах, сопровождающих решетки нелинейностей, индуцируемых интерференционным полем усиливаемых световых волн. Интерес к таким решеткам в настоящее время стимулируется исследованиями самоадаптнвньтх лазерных резонаторов, формируемых с участием динамических голограмм, которые возбуждаются в самих лазерных средах [82-83].
В настоящее время можно считать, что физические основы лазеров на динамических решетках развиты достаточно хорошо [84-85]. Установлены основные закономерности и построена теория стационарной генерации для различных нелинейных сред и различных резонаторов [86-89]. Особый интерес представляют динамические адаптивные системы с ОВФ зеркалами [90]. Возникновение и кинетика генерации в этих системах до сих пор остаются слабо исследованными. Основной причиной этого является сложность решения системы нелинейных уравнений для зависящих от времени величин даже при простейшем двухпучковом взаимодействии.
На кафедре Лазерной физики и технологии Ковровской Государственной Технологической Академии и в научном центре лазерных материалов и технологий Института общей физики РАН были исследованы петлевые схемы генератора с самонакачивающимся ОВФ-зеркалом, основанном на 4-х волновом взаимодействии с обратной связью [91-93]. Для успешной реализации лазерных устройств с ОВФ-зеркалами требуются дополнительные исследования каждого конкретного типа лазерной установки с целью моделирования и оптимизации параметров ОВФ-зеркала и адаптивной системы в целом. В данной работе проводится численное исследование нелинейного процесса четырехволнового смешения в оптически связанных петлевых лазерных системах с
самообраицением волнового фронта посредством балансных уравнений, как наиболее простых и требующих небольшое, по сравнению с другими методами, количество экспериментально измеренных параметров.
Излучение оптически накаченных лазеров является областью исследования в течении многих лет [177-183]. Детально изучена динамика генерации газовых лазеров с внерезонаторными методами оптического возбуждения. Узкая ширина линии поглощения газа резко ограничивает эффективность передачи энергии от кристалла в газ в условиях виерезонаторной накачки. В научном центре лазерных материалов и технологий Института общей физики РАН были исследованы внутрирезонаторные методы оптической накачки газа излучением однородно уширенного кристалла. В резонатор с ОСв:N6-кристаллом помещается газовая ячейка. Поглощение в газе на нескольких центральных частотах приводит к возникновению эффекта насыщения коэффициента усиления кристалла и повышению эффективности накачки газа. В данной работе проводится численное моделирование динамики генерации СЮО:Мс1-лазера в режиме активной модуляции добротности с внутрирезонаторной накачкой газа, необходимое для понимания процессов передачи энергии излучения из кристалла в газ.
Цель работы: решение проблемы повышения эффективности работы оптически связанных линейных и многопетлевых адаптивных резонаторов в режимах пассивной модуляции добротности кристаллом ЫР:172 , сам о модул я ни и
добротности на решетках усиления и активной модуляции добротности с внутрирезонаторной оптической накачкой газа.
13
Н а у ч н а я по в и з н а:
1. Предложена оригинальная математическая модель на основе нульмерных балансных уравнений, выполнены расчеты и проведен анализ динамики генерации в оптически связанных через полупрозрачное зеркало резонаторах в одномодовом режиме пассивной модуляции добротности кристалла \Mr\F2~\ выяснен механизм возникновения цугов импульсов при слабой модуляции мощности накачки, заключающийся в том, что первый резонатор является задающим генератором лазерной системы, а второй резонатор периодически открывает и запирает выходное излучение.
2. Предложена оригинальная математическая модель на основе балансных уравнений в одномерном приближении, выполнены расчеты и проведен анализ динамики генерации линейных оптических схем с пассивным затвором внутри и вне интерферометра Саньяка, па основе которой появляется возможность управлять энергетическими и временными параметрами излучения при изменении режимов накачки и начального пропускания ПЛЗ.
3. Предложены две математические модели на основе балансных уравнений и на основе уравнений для связанных волн, выполнены расчеты динамики генерации многопетлевого адаптивного резонатора на основе четырехволнового смешения в ИАГ:ЫсГ+ активных средах и интерферометром Саньяка в качестве концевого отражателя; выяснен механизм возникновения режима самомодуляции, заключающийся в периодической записи и стирании динамических голографических решеток усиления пересекающимися пучками в активных элементах.
4. Предложена оригинальная математическая модель на основе балансных уравнений, выполнены расчеты и проведен
14
анализ динамики генерации 0СС:Ы<1-лазера в режиме активной модуляции добротности с внутрирезонаторной оптической накачкой НВг - молекулярного газа. Показано что насыщение коэффициента усиления ССС:Ыс1-лазера с однородно уширенной линией спектра излучения увеличивает эффективность внутрирезонаторной оптической накачки газа по сравнению с другими схемами накачки.
Практическая ценность:
1. Разработаны алгоритмы, позволяющие объяснить механизм возникновения цугов импульсов в линейных оптически связанных резонаторах и оптимизировать режимы их генерации.
2. Разработаны алгоритмы, позволяющие объяснить высокую эффективность работы в импульсно-периодическом режиме генерационно-усилительного устройства с интерферометром Саньяка в качестве концевого отражателя и оптимизировать режимы его генерации.
3. Предложен способ нормировки балансных уравнений в одномерном приближении, позволяющий увеличить скорость счета в 80 раз.
4. Разработаны алгоритмы, позволяющие объяснить механизм самомодуляции гигантских импульсов в многопетлевой схеме с адаптивными резонаторами и решетками усиления на основе четырехволнового смешения в активных средах и оптмизировать режимы их генерации.
5. Проведено сравнение двух математических моделей - на основе балансных уравнений в частных производных и на основе уравнений для связанных волн; показано, что динамика генерации адаптивных резонаторов с обращением волнового фронта одинаково успешно описывается обеими моделями.
- Київ+380960830922