Ви є тут

Методы компьютерного анализа некоторых динамических систем классической механики

Автор: 
Тронин Константин Георгиевич
Тип роботи: 
кандидатская
Рік: 
2005
Кількість сторінок: 
56
Артикул:
136690
179 грн
Додати в кошик

Вміст

Содержание
1. Вероятностные эффекты в динамике твердого тела
1.1. Задача о вращении твердого тела под действием суммы постоянного и диссипативного возмущающих моментов ....
1.2. Падение тяжелого твердого тела в идеальной жидкости. Вероятностные эффекты и притягивающие множества...............
1.3. Динамика саней Чаплыгина на наклонной плоскости ....
2. Уравнения Лиувилля. Адиабатический хаос
2.1. Гамильтоновы системы с полутора степенями свободы. Скачки адиабатического инварианта и адиабатический хаос . . .
2.2. Динамика твердого тела с медленно меняющимися параметрами .......................................................
2.3. Расщепление сепаратрис и условия адиабатического хаоса .
3. Численные методы в динамике вихрей и задачах рассеяния
3.1. Введение...............................................
3.2. Уравнения движения и первые интегралы для вихрей на сфере.
3.3. Хореографии в движении трех и четырех вихрей на сфере . .
3.4. Хореографии п одинаковых вихрей........................
3.5. Возмущенное движение частиц жидкости в системе двух вихрей с противоположными интенсивностями.....................
3.6. Задача о трех притягивающих центрах....................
4. Заключение
Введение
Во времена формирования и разработки общих принципов динамики твердого тела, в так называемый классический период, первостепенным по важности считалось нахождение случаев, фиксируемых ограничениями на параметры и начальные условия, явной разрешимости задачи в квадратурах; в современной терминологии — интегрируемых случаев.
Случаи интегрируемости обычно связывают с именами их первооткрывателей. Среди них — известные западные математики и механики — Г. Кирхгоф, А.Клебш, П. Аппель, Ф.Брун, В. Вольтсрра, крупные достижения принадлежат русским ученым — А. М. Ляпунову, В. А. Стеклову,
Н. Е. Жуковскому, С. А. Чаплыгину. В этом смысле динамику твердого тела можно рассматривать, как область наиболее богатую содержательными задачами, составляющими «золотой фонд» современной динамики.
В классический период кроме нахождения первых интегралов особенно ценилось также получение явного решения в различных классах функций, в основном элиптических. Особых успехов здесь добились С. В. Ковалевская, В. Вольтерра, Г. Альфан, и их техника до сих пор во многом является непревзойденной.
В первой половине XX века интерес к поиску интегрируемых случаев несколько упал. Во многом это связано с пониманием широкими слоями математиков результатов А .Пуанкаре о неинтегрируемости типичной гамильтоновой динамической системы [1]. В сознании математиков это обесценило многие результаты классиков и привело к разработке новых методов теории возмущений.
Основные уравнения динамики твердого тела в общем случае также являются неинтегрируемыми, а значит обладающими сложным непредсказуемым поведением, изучение которого составляет предмет новой области исследований, называемой детерминированным хаосом. Систематически эффекты неинтегрируемости в динамике твердого тела обсуждаются в монографии В. В. Козлова [2]. Важное значение этой монографии состоит также в том, что в отличие от стремления классиков к получению явного решения, позволяющего мало что сказать о действительном движении системы, в ней поставлен вопрос о качественном анализе интегрируемых динамических систем.
3
Новый этап в развитии динамики твердого тела наступил с появлением компьютерной техники. В некоторм смысле, даже в анализе интегрируемой ситуации, для которой, в принципе, возможна полная классификация всех решений, компьютер открыл целую эпоху. Если ранее в исследовании интегрируемых систем преобладали аналитические методы, позволяющие получить явные квадратуры и геометрические интерпретации, то сочетание идей топологического анализа (бифуркационных диаграмм), теории устойчивости, метода фазовых сечений и непосредственной компьютерной визуализации «особо замечательных» решений способно вполне представить специфику интегрируемой ситуации и выделить наиболее характерные особенности движения. С помощью такого исследования стало возможным получить ряд новых результатов даже для такой, казалось бы, полностью изученной области (например, для волчка Ковалевской, Горячева—Чаплыгина, решения Бобылева—Стеклова). Дело в том, что эти результаты очень сложно усмотреть в громоздких аналитических выражениях. Доказательство этих фактов, видимо, может быть также получено аналитически, но уже после их компьютерного обнаружения. Примером того насколько могут быть громоздкими и трудоемкими аналитические выражения могут служить формулы для долготы и широты паралакса Луны, которые получил Ш.Делоне. Каждая формула размещалась на 200 листах печатного издания, и на их вывод Ш.Делоне потратил двадцать лет своей жизни [3]. Следует также особо отметить возможность анализа движения в абсолютном пространстве, при численном решении уравнений движения, который ранее практически вообще не производился.
Некоторые любопытные движения, имеющиеся у интегрируемых волчков, возможно, способны вызвать конкретные идеи по их практическому применению. Можно напомнить, что, например, открытый более столетия назад волчок Ковалевской до сих пор не нашел своего применения, именно потому, что о его движении, несмотря на полное решение в эллиптических функциях, было, практически, ничего не известно.
Компьютерные исследования заставляют во многом «произвести ревизию» и понять истинный смысл аналитических исследований. Если некоторые аналитические результаты — типа разделения переменных оказываются очень полезными для изучения бифуркаций и классических решений, то их дальнейшее «развитие» до получения явных квадратур (через 0-функции)
4
является практически бесполезным.
Относительно ценности результатов классиков в динамике твердого тела ряд сомнений был высказан еще в 70-х годах прошлого столетия [1]. Эпоха веры в безграничные возможности вычислительной техники породила убеждение, что все эти результаты являются бесполезными, и достаточно мощный компьютер способен спрогнозировать движение на любом интервале времени с достаточной точностью. Однако факт экспоненциально быстрого разбегания траекторий (связанный с неустойчивостью в целых областях фазового пространства) в типичных динамических системах, являющихся интегрируемыми, сделал такой компьютерный счет на достаточно больших интервалах времени не имеющим физического смысла, так как начальные условия для конкретных (прикладных) систем всегда известны с некоторой погрешностью.
Кажется, что вполне надеяться на численные методы можно только в интегрируемой ситуации, в которой такого разбегания не происходит. Тем не менее, оказывается, что консервативные системы даже в стохастической ситуации сохраняют многие элементы интегрируемой динамики. При небольшом возмущении интегрируемой задачи продолжают существовать невырожденные периодические орбиты, не разрушается большинство условно-периодических движений.
При дальнейшем увеличении возмущения, как с периодическими орбитами, так и с инвариантными торами, происходят различного рода бифуркации, имеющие некоторые общие закономерности. Они определяют изменение всей структуры фазового потока, сочетающего в себе зоны с.регулярным и хаотическим поведением, и задают сценарии перехода к хаосу. В динамике твердого тела эти исследования, невозможные без высокоточного компьютерного моделирования, стали проводиться лишь в конце XX века.
Оглядываясь назад, всю историю развития динамики твердого тела можно разделить на три этапа:
1. обнаружение и исследование частных интегрируемых случаев
2. качественный анализ уравнений движения
3. сочетание качественный анализ + компьютерное моделирование
5
По результатам работы на защиту вынесены следующие положения
1. Найдены значения параметров, при которых начинает проявляться вероятностное поведение динамических систем.
2. Построены диаграммы асимптотического хаоса начальных условий динамических систем.
3. Проведено численно-аналитическое исследование уравнений Стеклова Чаплыгина.
4. Получен вид хореографий трех и четырех вихрей на сфере.
5. Показана неинтегрируемость в общем случае задачи трех неподвижных тяготеющих центров.
Объекты и общая методика исследований. В настоящей работе с помощью численных методов проводится анализ решений некоторых задач, поставленных еще классиками динамики твердого тела. Выбранные задачи представляют собой динамические системы изменяющиеся во времени. Рассмотрены некоторые динамические системы с диссипацией и с медленно периодически изменяющимися параметрами. Для систем первого типа характерно наличие решений, к которым со временем эти системы приходят.
И хотя различными аналитическими методами можно получить асимптотические решения этих систем, оказывается, что эволюция подобных систем содержит элементы случайного поведения.
Для динамики систем второго типа характерно случайное изменение адиабатического инварианта (АИ), когда динамическая система эволюционирует таким образом, что вдали от ее сепаратрис адиабатический инвариант остается постоянным. При переходе через сепаратрису эволюция системы может развиваться по двум сценариям: а) малое изменение АИ порядка малой величины возмущения системы ~ э, б) с резким изменением ЛИ на случайную величину ~ 1. В результате многократного перехода динамической системы через сепаратрису значение АИ испытывает диффузию и его эволюция принимает случайный характер.
Кроме задач динамики твердого тела в работе рассмотрена динамика точечных вихрей на сфере, затронут вопрос о хаотизации рассеяния точечны-
6