Ви є тут

Тонкая лиувиллева классификация некоторых интегрируемых случаев механики твердого тела

Автор: 
Морозов Павел Валерьевич
Тип роботи: 
дис. канд. физ.-мат. наук
Рік: 
2007
Артикул:
624
179 грн
Додати в кошик

Вміст

Оглавление
Введение б
1 Инварианты ФоменкоЦишанга
1.1 Интегрируемые гамильтоновы системы на симилектическом многообразии
1.1.1 Понятие интегрируемой гамильтоновой системы.
1.1.2 Теорема Лиувилля
1.1.3 Отношения эквивалентности интегрируемых гамильтоновых систем
1.2 Инвариаты ФоменкоЦишанга интегрируемых гамильтоновых систем с двумя степенями свободы.
1.2.1 Изоэиергетические поверхности. .
1.2.2 Бифуркационная диаграмма.
1.2.3 Структура критических множеств па изоэиергетической поверхности
1.2.4 Окрестности сингулярных слоев ли
увиллева слоения на изоэнергетичсской поверхности
1.2.5 Матрицы склейки и допустимые системы координат
1.2.6 Числовые метки
1.2.7 Формула Топалова
1.3 Интегрируемые гамильтоновы системы в механике твердого тела.
1.3.1 Фазовое пространство
1.3.2 Основные случаи интегрируемости. .
1.3.3 Результаты лиувиллевой классификации интегрируемых случаев.
2 Лиувиллева классификация интегрируемого случая Стеклова
2.1 Грубая лиувиллева классификация систем случая Стек
2.2 Классификация круговых слоений Лиувилля
2.3 Классификация невырожденных положений равновесия
2.4 Круговые молекулы вырожденных одномерных орбит .
2.5 Построение допустимых систем координат
2.6 Определение взаимного расположения базисных циклов
2.7 Алгоритм вычисления инварианта ФоменкоЦишанга .
2.8 Пример вычисления меченой молекулы
3 Лиувиллева классификация интегрируемого случая Клебша
3.1 Бифуркационные диаграммы, семейства торов и их перестройки
3.2 Классификация невырожденных положений равновесия
3.3 Круговые молекулы вырожденных одномерных орбит .
3.4 Допустимые системы координат
3.5 Определение взаимного расположения базисных циклов
3.6 Разрешение неопределенностей с ориентациями
3.7 Вычисление монодромии особенности типа фокусфокус
3.8 Полный список изоэнергетических молекул случая Клеб
3.9 Эквивалентности случаев Эйлера, Клебша и Стсклова
Лиувиллева классификация интегрируемого случая Соколова
4.1 Гамильтониан и дополнительный интеграл случая Соколова .
4.2 Результаты П. Е. Рябова .
4.3 Невырожденные положения равновесия в случае Соколова .
4.4 Круговые молекулы вырожденных одномерных орбит .
4.5 Построение допустимых систем координат.
4.6 Определение взаимною расположения базисных циклов
4.7 Применение формулы Топалова
Лиувиллева классификация интегрируемого случая КовалевскойЯхьи при 7 0
5.1 Гамильтониан и дополнительный интеграл.
5.2 Бифуркационные диаграммы, семейства торов и их перестройки
5.3 Классификация невырожденных положений равновесия
5.4 Круговые молекулы вырожденных одномерных орбит .
5.5 Построение допустимых систем координат.
5.6 Определение взаимною расположения базисных циклов
5.7 Применение формулы Топалова.
Список таблиц
Список рисунков
Список литературы