Введение
СОДЕРЖАНИЕ
4
Глава 1. Математическая модель движения идеальной сжимаемой жидкости с образование разрывов..........................................15
1.1. Основные уравнения математической модели......................15
1.2. Вихревое движение................................................25
1.3. Кинематика и геометрия поверхностей в пространстве...............30
Глава 2. Изучение поведения вектора вихря скорости за стационарными ударными и детонационными волнами, расположенными в сверхзвуковом неоднородном потоке горючего газа..........................38
2.1. Плоскопараллельные и осесимметричные незакрученные
установившиеся движения газа..........................................38
2.2. Осесимметричное закрученное установившееся движение газа 46
2.3. Фронт детонации общего вида...................................51
2.4. Поведение завихренности в зависимости от угла наклона касательной для течений с постоянными параметрами...........................57
Глава 3. Изучение поведения вектора вихря скорости в сверхзвуковом неоднородном закрученном потоке горючего газа за движущейся ударной или детонационной волной. Возможность распространения детонационных волн во вращающихся потоках в режиме Чепмена-Жуге........................67
3.1. Одномерные неустановившиеся движения газа........................67
3.2. Возможность распространения детонационных волн во вращающихся потоках в режиме Чепмена-Жуге...................................74
3.3. Плоскопараллельные и незакрученные осесимметричные
неустановившиеся движения газа........................................88
3.4. Осесимметричные закрученные неустановившиеся движения газа 98
2
Глава 4. Изучение параметров течения за ударной и детонационной волной заданной формы в однородном сверхзвуковом потоке горючего
газа...................................................................106
4.1. Изучение поведения параметров течения в зависимости от угла наклона касательной к поверхности разрыва........................106
4.2. Исследование параметров течения и завихренности за ударной и детонационной волной заданной формы, находящейся в сверхзвуковом потоке горючего газа.............................................119
Заключение. Основные результаты........................................148
Список литературы.....................................................150
з
Введение
В работе рассматриваются течения газа со сверхзвуковой скоростью, в которых возникают разрывы в пространственном распределении параметров среды. Изучается завихренность потока за стационарными и нестационарными ударными и детонационными волнами, которые возникают* в сверхзвуковых неоднородных потоках горючего газа.
Проблема является актуальной, поскольку задача о сверхзвуковом взаимодействии вихревого течения с ударной волной является одной из классических в теоретической газовой динамике и ей посвящено достаточно много как теоретических, так и экспериментальных работ. Эти проблемы имеют важное прикладное значение, так как они лежат в основе ряда технических приложений. Взаимодействие сверхзвукового вихревого потока с ударными волнами встречается в ряде аэродинамических задач связанных с полетом ракет и самолетов, в камерах сгорания ракетных двигателей и так далее. Таким образом, задача по изучению завихренности потока за ударными или детонационными волнами, возникающими в сверхзвуковом потоке горючего газа, имеет важное теоретическое и прикладное значение.
Выражение для вихря за искривленной стационарной ударной волной для течений с постоянными параметрами было впервые получено К. Трусделом в 1952 году [1]. Позже выражение для вихря было получено другими авторами, которые не были знакомы с работой К. Трусдела. М. Лайтхилл (1957) [2] распространил этот результат на произвольный искривленный скачок, получив выражение для вихря непосредственно за скачком через главные кривизны поверхности ударной волны, в предположении, что ударная волна имеет бесконечную интенсивность.
В работе [3] У.Д. Хейз (1957) получил обобщенную формулу для завихренности с помощью рассуждений, в которых не используются условие постоянства полной энтальпии и формула Крокко для вихря. В работах [4,5] были получены формулы для компонент вектора вихря за ударной волной любой интенсивности при постоянных значениях параметров набегающего
потока, которые совпадают с формулами для вихря, полученными М. Лайтхиллом.
Так в работе [4] Г.И. Майкапаром (1968) получены формулы для вектора вихря скорости за головной ударной волной. Для нахождения величины вихря на поверхности разрыва была введена ортогональная криволинейная система координат, где одна криволинейная координата отсчитывалась по нормали, а две другие отсчитывались вдоль главных линий кривизны. При исследовании величины завихренности Майкапаром показано, что интенсивность вихря растет с увеличением числа Маха. Так же им показано, что вихри концентрируются в областях большой кривизны ударной волны.
Чуть позже В.В. Русанов (1973) в своей работе [5], вычисляя связь между формой ударной волны и производными газодинамических функций за ее фронтом, вывел ту же формулу для завихренности, что ранее была получена в работах [1 -4].
В работе [6] приведены численные расчеты взаимодействия сверхзвукового продольного вихря с наклонной ударной волной. Выявлено три режима взаимодействия: слабый, умеренный и сильный. Численно показано, что при сильном и умеренном взаимодействии возможно расщепление вихря на ударной волне. При сильном взаимодействии форма фронта ударной волны существенно отличается от прямолинейной. Данные численные исследования подтверждают экспериментальные работы 1.М. Ка1к1югап [7-9], а так же аналогичные численные исследования [10-13]. Результаты, изложенные в диссертации, предполагают наличие одновременно вихревого потока и поверхности разрыва в потоке. Поэтому полученные результаты справедливы как для сильного, так и для слабого взаимодействия вихря с ударной волной.
В работе [14] с использованием ла1ранжевого подхода получены формулы для обобщенного вектора вихря. Рассматривается модель адиабатического движения газа, неоднородной несжимаемой жидкости и
5
идеальной магнитной гидродинамики. В этой работе получен закон сохранения обобщенного вектора вихря на ударных волнах для плоского вихревого течений.
В данной работе определяется завихренность непосредственно за ударной или детонационной волной находящейся в вихревом сверхзвуковом потоке. Завихренность определяется для одно-, двух-, и трехмерных течений. Г. Эммонсом [15] было произведено подобное исследование для разного типа стационарных волн горения в несжимаемой жидкости.
Отличие от предыдущих работ заключается в том, что в данной работе рассматривается не только ударные, но и детонационные волны. Завихренность определяется как для стационарных, так и для нестационарных поверхностей разрыва. При этом набегающий поток является вихревым.
Как уже говорилось ранее, в данной работе завихренность изучается не только за ударными, но, главным образом, за детонационными волнами. Термин детонация (франц. détoner — взрываться, от лат. detono — гремлю) возник, когда около 1880 г. ряд французских физиков, главным образом Вьей, Малляр, Ле Шателье и Вертело, начали производить опыты над распространением пламени. Они нашли, что при обычных условиях пламя в трубе, которая наполнена горючей газообразной смесыо, поджигаемой в конце, распространяется с небольшой скоростью, порядка нескольких метров в секунду. Но при некоторых обстоятельствах медленный процесс горения переходит в очень быстрый процесс, распространяющийся с огромной скоростью, около 2000 м/с или больше. Этот быстрый процесс сгорания был назван детонацией. Р.стественно, что странный факт наличия двух скоростей распространения горения (часто встречающийся не только у газов, но и у твердых взрывчатых веществ) требует теоретического объяснения. Очень простое и убедительное объяснение было дано в 1899 г. Чепменом и независимо от него в 1905 г. Жуге. Они предположили, что химическая реакция происходит мгновенно, другими словами, что имеется резкий фронт,
б
бегущий по несгоревшему газу и сразу превращающий его в сгоревший. Очевидно, что переход через такой фронт аналогичен переходу от несжатого газа к сжатому во фронте ударной волны. Единственная разница между ударным и детонационным переходом состоит в том, что химическая природа сгоревшего газа отличается от природы несгоревшего и что реакция влияет на энергетический баланс [16-18].
Принято различать два режима возникновения детонации в газе [19]:
- жесткий режим прямого инициирования детонации без промежуточной стадии ускорения пламени;
- мягкий режим перехода горения в детонацию при ускорении пламени.
Жесткий режим возбуждения детонации связан с наличием мощного
источника инициирования, например в форме взрыва заряда взрывчатого вещества. Размеры заряда, достаточные для жесткого возбуждения детонации, зависят от вида горючего, типа окислителя и состава смеси. Характерные значения заряда тротила минимального веса, инициирующего детонацию смесей некоторых горючих газов с воздухом, можно найти в [20-22].
Характер развития течения, а в конечном итоге реализация того или иного режима горения, зависит от начального состава [23, 24] и состояния среды [25], от способа инициирования [24,26 - 29] и количества подведенной энергии [24, 26, 27, 29-31], от условий, в которых происходит инициирование [32 - 35].
Впервые задача о распространении детонации от поджигающего источника в однородном окружающем пространстве была поставлена
O.E. Власовым (1937), который показал, что задача является автомодельной, и получил соответствующее уравнение [36].
Наиболее общий подход к анализу задач о распространении волн детонации или горения от поджигающего источника на основании теории размерности был развит Л.И. Седовым (1945) [37, 38]. Л. И. Седовым в 1945 г. были впервые исследованы в общем виде все возможные
7
автомодельные движения со сферической и цилиндрической симметрией и дано решение многих конкретных задач (о сферическом и цилиндрическом поршне, о сходящихся и расходящихся потоках и других), в том числе задача о сильном точечном взрыве [38].
В однородном взрывчатом веществе детонация обычно распространяется с постоянной скоростью, которая среди возможных для данного вещества скоростей распространения детонационной волны является минимальной. Детонация, отвечающая указанным выше условиям, называется процессом Чепмена-Жуге; соответствующая ей минимальная скорость распространения принимается в качестве характеристики взрывчатого вещества [39]. При определённых условиях во взрывчатом веществе может быть возбуждена детонация, скорость распространения которой превышает минимальную скорость детонации. Так, взрыв заряда твёрдого взрывчатого вещества, помещённого в газообразную взрывчатую смесь, порождает в смеси ударную волну, интенсивность которой во много раз превосходит интенсивность волны, отвечающей режиму с минимальной скоростью. В результате в газовой смеси распространяется детонационная волна с повышенной скоростью. В этой волне, в отличие от процесса Чепмена-Жуге, зона химической реакции движется относительно продуктов реакции с дозвуковой скоростью. Поэтому по мере удаления такой волны от места её возникновения ударная волна постепенно ослабевает (сказывается влияние волн разрежения) и скорость распространения детонации снижается до минимального значения [40].
Детонационную волну с повышенной скоростью распространения можно также получить в неоднородном взрывчатом веществе при движении полны в направлении убывающей плотности. Ещё одним примером распространения детонации со скоростью, превышающей минимальное значение, может служить сферическая детонационная волна, сходящаяся к центру. Скорость волны с приближением к центру возрастает. В центре такая
8
волна в течение короткого интервала времени создаст давление, во много раз превышающее величину, характерную для режима Чепмена-Жуге [41].
В решении задач о распространении волн детонации необходимо выделить случай, когда осуществляется режим Чепмена-Жуге. Этот режим интересен тем, что в ряде практически важных задач детонационная волна с момента возникновения имеет скорость волны Чепмена-Жуге или, по мере удаления от места инициирования, асимптотически стремится к этому режиму.
В результате решения краевой задачи движения плоской волны детонации от поджигающего источника A.A. Гриб (1939) показал, что волна обязательно должна распространяться в режиме Чепмена-Жуге (Ч.-Ж.), тем самым был получен ответ на вопрос о выборе ее скорости [42].
Я.Б. Зельдовичем (1940) была глубоко и всесторонне развита теория детонационной волны [43]. Детально рассмотрев структуру фронта детонационной волны и процессы, происходящие в нем, Зельдович впервые объяснил и строго доказал определенность скорости детонации в условиях обычного опыта [44]. Зельдович, одним из первых дал в 1942 г. строгое решение задачи о сферической детонации и пришел к выводу, что и в этом случае волна детонации так же распространяется в режиме Ч.-Ж. [45].
В работах В.А. Левина, Г.Г. Черного (1967, 1976) показано, что в отличие от ударных волн, плоская пересжатая волна детонации стремится в бесконечности к асимптоте г - Dj[t - t0) = comt, где Dd - скорость распространения волны Ч.-Ж., г - координата, вдоль которой распространяется волна, / - время. А переход цилиндрической или сферической сильной детонационной волны в волну Ч.-Ж. может происходить вообще на конечном расстоянии от места инициирования [46 -48].
Детальный анализ структуры течения в окрестности точки перехода показал, что за точкой перехода волна распространяется в режиме Ч.-Ж. За
9
ней формируется область автомодельного течения, как если бы волна с самого начала распространялась в режиме Ч.-Ж. [48].
В одномерной постановке (плоская, цилиндрическая и сферическая симметрия) решение задачи подробно изучено; найдено, что в однородных средах режим Ч.-Ж. может осуществляться только в расходящейся волне [38, 40, 45, 49], сходящиеся же детонационные волны при приближении к центру симметрии ускоряются [50 - 52], то есть режим Чепмена-Жуге невозможен.
Аналогичные результат получен в работе [53] для детонационной волны имеющей вид произвольной достаточно гладкой поверхности в пространстве. В работе показано, что детонационная волна может распространяться в однородной среде в режиме Ч.-Ж. только при условии выпуклости этой поверхности в сторону движения волны, т.е. волна должна расширяться с течением времени.
Ряд задач о распространении детонационной волны в неоднородных средах решен в работах [54-57]. Изучались как расходящиеся, так и сходящиеся детонационные волны. В частности, показано, что в однородной среде сходящиеся цилиндрические и сферические волны обязательно пересжатые [50, 58].
Трудности, возникающие при исследовании волн Ч.-Ж., заключаются в том, что поверхность волны в этом случае является огибающей характеристических поверхностей уравнений газовой динамики. Впервые это было отмечено в работе В.А. Левина, Г.Г. Черного (1967) [46].
Для произвольных систем квазилинейных уравнений в частных производных первого порядка исследованы условия существования и определен вид асимптотического разложения решения в окрестности огибающей характеристических поверхностей, на которой заданы начальные значения функций (В.А. Левин, А.М. Свалов, 1978) [59].
Как и в случае произвольных волн детонации Ч.-Ж., в общем случае существует только два решения и оба по одну сторону огибающей
ю
поверхности. Сходимость таких рядов доказана В.Л. Куликовским (1985) [60].
Примером неодномерного распространения волн детонации в режиме Ч.-Ж. является решение задачи об инициировании волны вдоль полуплоскости. В этом случае от ребра полуплоскости формируется цилиндрическая волна Ч.-Ж., переходящая в плоскую волну. Особенностью этого течения является образование висячего скачка уплотнения в продуктах сгорания за цилиндрической частью волны детонации (В.А. Левин,
A.М. Свалов, 1980) [36].
При инициировании волн детонации в средах с переменным тепловыделением, так же возможны различные режимы распространения (Э.И. Андрианкин, 1966; Я.Г. Сапунков, 1967) [55, 56].
Критерий, при выполнении которого волна может распространяться в режиме Ч.-Ж. в общем случае получен в работе A.A. Афанасьева,
B.А. Левина [61]. Критерий получен для волны детонации распространяющейся в покоящейся горючей неоднородной смеси газов.
Остановимся еще на решении задач об обтекании тел горючим газом с образованием отсоединенной волны детонации. С.М. Гилинский,
З.Д. Запрянов и Г.Г. Черный (1966) [62] и С.М. Гилинский и З.Д. Запрянов (1967) дали решения задач об обтекании сферы и цилиндра с отсоединенной детонационной волной. Интересной новой особенностью обтекания тел с волной детонации оказалось то, что при обтекании плоских контуров волна детонации, постепенно ослабевая при удалении от тела, в бесконечности переходит в волну Чепмена-Жуге; в случае же обтекания тела вращения переход сильной волны детонации в волну Чепмена-Жуге происходит на конечном расстоянии от тела. Аналитическое доказательство этого факта дано В.А. Левиным и Г.Г. Черным (1967, 1968) [46].
Настоящая диссертационная работа посвящена дальнейшему изучению поведения параметров газа за движущимися и стационарными ударными и детонационными волнами. Наряду с основными величинами,
м
определяющими движение газа (плотностью, скоростью и давлением), рассматривается гак же завихренность движущегося потока.
Первая глава посвящена описанию моделей течений с разрывами. Б первом параграфе вводятся основные уравнения математической модели движения газа с образованием ударных и детонационных волн, приводится постановка задачи для стационарных и нестационарных течений. Во втором параграфе данной главы описываются вихревые движения. Третий параграф посвящен кинематике и геометрии поверхностей в пространстве. В нем описывается криволинейная ортогональная система координат, которая вводится на поверхности разрыва. Приводятся основные формулы из дифференциальной геометрии, которые потом используются для нахождения компонент вектора вихря за поверхностью разрыва.
Вторая глава посвящена исследованию установившихся движений газа. Изучается поведения вектора вихря скорости за детонационной волной, расположенной в стационарном сверхзвуковом вихревом потоке горючего газа. Отличие от работ [1—5] заключается в том, что рассматриваются не только ударные, но и детонационные волны, так же рассматривается поток с отличной от нуля начальной завихренностью. В первом параграфе рассматриваются плоскопараллельные и незакрученные осесимметричные движения. Во втором параграфе рассматриваются осесимметричные закрученные движения. В третьем параграфе рассматривается фронт детонации общего вида. Набегающий поток является вихревым с заданным распределением параметров. В четвертом параграфе анализируется зависимость величины относительной завихренности от определяющих параметров задачи.
Третья глава посвящена исследованию распространения волн детонации в закрученных потоках газа. В первом параграфе данной главы рассматриваются одномерные нестационарные завихренные течения. Во втором параграфе данной главы рассматривается распространение осесимметричных детонационных волн во вращающихся неоднородных потоках газов, а так же
плоских волн в плоском сдвиговом течении. Решение ищется в виде разложение в ряд. Определено необходимое условие существования решения, соответствующее распространению волны в режиме Чепмена-Жуге. Причем, в отличие от работы [61], в которой исследовались иезакрученные течения, в данной работе критерий ищется как для сходящихся, так и расходящихся волн детонации в закрученном потоке газа. В третьем параграфе третьей главы рассматриваются плоскопараллельные и осесимметричные иезакрученные неустановившиеся движения газа. Определяется завихренность за движущейся детонационной искривленной волной, образующейся в неоднородном потоке горючего газа. В четвертом параграфе данной главы изучается поведение вектора вихря скорости в осесимметричном закрученном потоке на движущейся поверхности разрыва, возникающей в неоднородном потоке горючего газа.
Четвертая глава посвящена исследованию параметров течения -давления, плотности, скорости и завихренности непосредственно за двумерной криволинейной стационарной волной детонации при постоянных значениях параметров набегающего потока. В первом параірафе данной главы рассматривается распределение параметров относительно угла наклона касательной к волне детонации. Течение исследуется в пределах: aJ <>а <л 12, где — угол наклона касательной к волне в точке перехода
волны в режиме Чепмена-Жуге. Параметры течения исследуются при различных значениях числа Маха набегающего потока и при различных значениях тепловыделения. Производится сравнение параметров течения для ударных и детонационных волн. Гак же в данном параграфе данной главы исследуются параметры течения в режиме Чепмена-Жуге. Во втором параграфе данной главы изучается поведение давления, скорости, плотности и завихренности на поверхности разрыва, расположенной в сверхзвуковом, однородном потоке горючего газа. Поверхность разрыва рассматривается заданной формы.
13
- Київ+380960830922