Вы здесь

Суперсимметричные теории с сильной связью и физика за пределами стандартной модели

Автор: 
Дубовский Сергей Леонидович
Тип работы: 
кандидатская
Год: 
2001
Количество страниц: 
124
Артикул:
1000322137
179 грн
Добавить в корзину

Содержимое

Оглавление
Введение 3
1 Теорема об отсутствии перенормировки индуцированного заряда. 19
1.1 Доказательство теоремы об отсутствии перенормировки индуцированного заряда................................................... 19
1.2 Пример нарушения разложения по производным................... 23
1.3 Условия согласования индуцирозанных зарядов..................’25
2 Применение теоремы об отсутствии перенормировки индуцированного заряда к изучению калибровочных теорий 30
• 2.1 Квантовая хромодинамика..................................... 30
„2.2 Суперсимметричная КХД при Аг/ > Лтс........................... 33
2.3 Суперсимметричная КХД с пространством вакуумов, искривлен- • ным за счет кзантовых поправок .................................. 39
2.4 Мягко нарушенная суперсимметрия.............................. 47
3 Редукция суперсимметричной КХД методом орбифолда 53
4 Возможности объединения скрытого сектора с видимым: пертур-
1
бативыое объединение и составные модели 66
4.1 Пертурбативкое объединение.............................. 66
4.2 Составные модели........................................... 75
5 Массивная материя в моделях с бесконечными дополнительными измерениями 83
5.1 Модели с дополнительными большими измерениями........... 83
5.2 Нестабильность массивной материи в моделях с бесконечными.измерениями ...................................................". . 88
5.2.1 Скалярные поля.................................... 91
5.2.2 Фермноны.......................................... 95
5.3 Распад электрона в моделях с бесконечными дополнительными измерениями 101
Заключение ~ 111
2
Введение
Стандартная модель физики частиц, включающая в себя электрослабую 31/(2) х £/(1) теорию [1, 2, 3] и квантовую хромодинамику [4, 5, б, 7, 8, 9, 10, 11], с хорошей точностью описывает взаимодействия частиц при энергиях до сотни ГэВ. В то же время имеется ряд веских экспериментальных и теоретических оснований считать, что Стандартная модель неполна, и что некоторые из заложенных в нее теоретических предпосылок требуют уточнения.
К числу прямых экспериментальных указаний на физику за рамками Стандартной модели можно отнести измерения потоков солнечных и атмосферных нейтрино [12, 13, 14, 15, 16], приведшие к сильным указаниям на существование нейтринных осцилляций. Астрофизические и космологические наблюдения также требуют привлечения новых физических идей для решения проблем темной материи и космологической постоянной, выяснения конкретной модели инфляции.
С теоретической точки зрения первым очевидным недостатком Стандартной модели является то, что эффекты гравитации описываются только на чисто классическом уровне, и последовательная квантовая теория гравитации на сегодняшний день отсутствует. Следовательно, неизбежна модификация современных представлений о фундаментальных законах природы, начиная с масштабов энергии, где квантово-гравитационные эффекты становятся существенны, то
3
есть с Е ~ Мр1 ~ 1019 ГэВ.
Однако, есть основания ожидать “новой физики” и на существенно более низких энергиях. В петлевых поправках к массе хиггсовского бозона в Стандартной модели имеются квадратичные расходимости. Следовательно, если предположить, что Стандартная модель справедлива вплоть до энергий порядка МР!> где она сменяется более фундаментальной теорией, включающей квантовую гравитацию, то следует ожидать поправок к массе хиггсовского бозона порядка МР1. Такие поправки можно согласовать со значением массы хиггсовского бозона порядка М\у ~ 100 ГэВ только при наличии крайне невероятных случайных сокращений во всех порядках теории возмущений. Необходимость таких сокращений является одним из проявлений так называемой проблемы иерархии.
Одним из подходов к решению проблемы иерархии является введение симметрии, которая естественным образом приведет к сокращениям поправок к массе хиггсовского бозона во всех порядках теории возмущений. Перспективным кандидатом на роль такой симметрии является суперсимметрия [17] — симметрия между бозонами и фермионами. В реальном мире такая симметрия не наблюдается, что может быть связано с тем, что она спонтанно нарушена. Как следствие этого нарушения, все суперпартнеры известных частиц становятся тяжелее, и тем самым избегают наблюдения на современных ускорителях. Если расщепление масс между суперпартнерами по порядку величины равно Му/, то проблема с квадратичными расходимостями решается. Стоит отметить, что суперсимметрия не является единственным возможным решением проблемы иерархии. Вообще говоря, любые новые частицы и взаимодействия, появляющиеся при энергиях 100 ГэВ - 1 ТэВ, и приводящие к отсутствию квадратичных расходимостей на более высоких энергиях, решили бы проблему иерархии. Интересная возможность
4
состоит в том, что 1 ТэВ и есть фундаментальный масштаб для полной теории, включающей гравитацию, а масштаб Mpi возникает за счет динамических эффектов. Позже мы рассмотрим одну из реализаций этого подхода к решению проблемы иерархии, а пока рассмотрим суперсимметричные модели более подробно.
Суперсимметрия очень хорошо согласуется с другой теоретической идеей, на протяжении долгого времени являющейся одним из основных стимулов дальнейшего развития физики частиц — представлением о том, что все взаимодействия в природе могут быть описаны единым образом в рамках калибровочной теории Большого объединения. Эта идея уже частично реализовалась в электросла-бом секторе Стандартной модели, где удалось построить калибровочную теорию, описывающую на единой основе как электромагнитные, так и слабые взаимодействия, несмотря на явную разницу между свойствами этих взаимодействий при низких энергиях. Сильным указанием на то, что имеет место дальнейшее объединение взаимодействий на более высоком масштабе энергий, явилось обнаружение в 70-х годах приближенного совпадения на масштабе порядка 1014 ГэВ констант калибровочных взаимодействий, проэкстраполированных с помощью уравнений ренормгруппы [18]. Однако, позднее в результате более точных измерений sin 0w и константы сильного взаимодействия выяснилось, что в Стандартной модели свойство объединения не имеет места. Кроме того, относительно низкий предсказывавшийся масштаб объединения порядка 1014 ГэВ противоречит современным ограничениям на время жизни протона.
Суперсимметрия решает обе эти проблемы. А именно, калибровочные константы связи (а также юказские константы 6-кварка и r-лептона) объединяются с хорошей точностью, если масштаб масс суперпартнеров не выше 10 Ч- 20 ТэВ.
5
Более того, масштаб объединения сдвигается до Мсит ~ ДО16 ГэВ, что не противоречит ограничениям на время жизни протона.
Таким образом, как проблема иерархии, так и объединенные модели физики частиц указывают на существование суперпартнеров обычных частиц с массами порядка 100 ГэВ-1 ТэВ. Эта область масс будет в ближайшее время доступна изучению на ускорителях, например на Большом Адронном Коллайдере [19].
Любая суперсимметричная теория, претендующая на описание физики частиц, должна быть снабжена механизмом нарушения суперсимметрии, приводящим к расщеплению масс в супермультиплетах. При этом должно сохраниться свойство сокращения квадратичных расходимостей, необходимое для устойчивости иерархии между Мрі и Мур- Естественным решением этой задачи является спонтанное нарушение суперсимметрии. Построить модель с таким нарушением, используя непосредственно поля Стандартной модели (и их суперпартнеры), не удается,'так что обычно предполагается, что оно происходит в некотором дополнительном, так называемом скрытом секторе. Нарушение суперсимметрии может быть передано в видимый сектор либо с помощью гравитационного взаимодействия на масштабе Мрі (обзор таких моделей может быть найден, например, з [20]), либо с помощью обычных калибровочных взаимодействий (см. обзоры [21, 22]).
Известно несколько механизмов спонтанного нарушения суперсимметрии. Теоремы об отсутствии перенормировок в суперсимметричных теориях гарантируют, что если суперсимметрия не нарушена на древесном уровне, то она сохранится во всех порядках теории возмущений. Таким образом, суперсимметрия должна спонтанно нарушаться либо на древесном уровне, либо за счет непертурбатив-ных эффектов.
6
Последний сценарий имеет дополнительное преимущество, состоящее в возможности объяснить не только стабильность, но и само происхождение калибровочной иерархии [23]. Именно, во многих моделях нарушение суперсямметрии происходит динамически, за счет непертурбативных эффектов, которые становятся существенными на характерном масштабе Л ~ ехр (-0(1/д2(М))) М, где М ~ Мр\ или Мсит> а, д(М) - некоторая калибровочная константа связи на масштабе М. Малость <?(ЛО обеспечивает малость масштаба нарушения суперсимметрии Л М, а во многих реалистических моделях имеется возможность динамически - за счет радиационных поправок - получить вакуумное среднее хиггсовского поля порядка Л с точностью до степеней констант связи, то есть обеспечить калибровочную иерархию. * •
Задача построения реалистической модели с непертурбативным нарушением суперсимметрии стимулировала развитие методов изучения суперсимметричных калибровочных теорий в режиме сильной связи. В последние годы был достигнут существенный прогресс в этой области, связанный с открытием явления дуальности в N = 1 суперсимметричных калибровочных теориях [24]. Дуальность позволяет описать низкоэнергетическое поведение одной (“электрической”) калибровочной теории, сильно связанной при низких энергиях, в терминах другой (“магнитной”) теории, находящейся в области слабой связи. Кроме того было обнаружено, что могут происходить другие интересные эффекты, такие как изменение топологии пространства закуумов за счет непертурбативных поправок
[25]. В результате был построен целый ряд калибровочных теорий со спонтанным нарушением суперсимметрии (см. обзор таких моделей в [22, 26.).
Стоит отметить, что большинство из полученных результатов не были строго доказаны, поскольку прямые вычисления в режиме сильной связи проблематич-
7
ны. Вместо явных вычислений активно использовались соображения, .основанные на требованиях симметрии и голоморфности. Такое качественное рассмотрение оказывается очень плодотворным в суперсимметричных теориях. Еше одним важным инструментом, помогающим проверить правильность того или иного описания теории в области сильной связи (а также “угадать” новую дуальность), являются условия согласования аномалий, предложенные ’т Хоофтом [27]. Эти условия основаны на теореме Адлера-Бардина [28], утверждающей, что коэффициенты при аномальных членах в трехточечных функциях Грина глобальных токов насыщаются вкладом низшего порядка теории возмущений. Следовательно, эти коэффициенты не могут зависеть от констант связи теории. Условия согласования аномалий говорят, что аномальные коэффициенты, вычисленные в эффективной теории, описывающей низкоэнергетическую динамику в области сильной связи, должны совпадать с их значениями, полученными в фундаментальной теории. Условия ’т Хоофта накладывают сильные ограничения на спектр легких частиц теории и оказываются крайне полезными при построении эффективных теорий, описывающих динамику в режиме сильной связи.
Для дальнейшей проверки известных дуальностей и получения новых результатов крайне полезно расширение набора приемов для качественного изучения непертурбативной динамики. Одно такое предложение было сделано в работе [29]. В этой работе было высказано предположение, что справедлив аналог теоремы Адлера-Бардина для фермионных зарядов, индуцированных в вакууме топологичесхи нетривиальным внешним скалярным полем. Таким образом индуцированные заряды могут использоваться для получения информации о низкоэнергетическом спектре наравне с коэффициентами при аномалиях.
В главе 1 настоящей диссертации описывается полученное в работе [30] до-
8
казательство теоремы об отсутствии перенормировки индуцированных зарядов. Таким образом условия согласования индуцированных зарядов действительно могут применяться для изучения калибровочных теорий в режиме сильной связи. В этой же главе изучается область применимости новых условий согласования и показывается, что. вообще говоря, они не сводятся к условиям ’т Хоофта, хотя и тесно связаны с ними.
Следующая глава 2, основанная на работах [30] и [31], посвящена применению условий согласования индуцированных зарядов для проверки точных результатов в суперсимметричных теориях и теориях с мягко нарушенной суперсимметрией. Так, новые условия согласования применяются к суперсимметричной КХД в режиме дуальности и показывается, что в этом случае они выполняются. В случае равенства числа цветов и кварковых ароматов, когда происходит изменение топологии пространства вакуумов за счет квантовых поправок, оказывается, что условия согласования зарядов требуют введения нового слагаемого в низкоэнергетическое действие. Это слагаемое аналогично члену Весса-Зумино в обычной КХД и его существование тесным образом связано с нетривиальной топологией квантового пространства вакуумов.
Наиболее полезными оказываются условия согласования индуцированных зарядов в теориях с мягко нарушенной суперсимметрии. Как показано в главе.2, в этом случае они позволяют получить информацию о низкоэнергетическом поведении теории, не вытекающую из условий ’т Хоофта. К примеру, в случае, когда число цветов равно числу ароматов, имеется два кандидата на роль вакуума с разными симметрийными свойствами. Условия ’т Хоофта выполнены для обоих кандидатов. Однако, условия согласования индуцированных зарядов не выполняются в одном из случаев, что позволяет найти истинный вакуум теории. То,
9