Ви є тут

Квантовые флуктуации излучения в нелинейных резонансных оптических процессах

Автор: 
Трошин Александр Сергеевич
Тип роботи: 
дис. д-ра физ.-мат. наук
Рік: 
2006
Артикул:
4753
179 грн
Додати в кошик

Вміст

-2-
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ................................................. 5
ГЛАВА 1. ИЗМЕРЯЕМЫЕ ВЕЛИЧИНЫ И СУЩЕСТВЕННО НЕКЛАССИЧЕСКИЕ КОРРЕЛЯЦИОННЫЕ ОПТИЧЕСКИЕ ЭФФЕКТЫ....................................... 32
1.1. Корреляционные функции и спектр флуктуаций фототока. 32
1.2. Антигруппировка и субпуассоновская статистика фотонов. Наблюдаемые признаки................................. 46
1.3. Простой пример антигруппировки и субпуассоновской статистики фотонов................................... 52
1.4. Метод скоростных уравнений с ланжевеновскими источниками дробовых шумов....................................... 56
ГЛАВА 2. СТАТИСТИЧЕСКИЕ СВОЙСТВА НЕЛИНЕЙНОЙ
РЕЗОНАНСНОЙ ФЛУОРЕСЦЕНЦИИ........................ 63
2.1. Групповые разложения корреляционных функций поля излучения системы атомов....................................... 64
2.2. Антигруппировка и субпуассоновская статистика фотонов нелинейной резонансной флуоресценции: "одноатомный" эффект 74
2.3. Многоатомные интерференционные эффекты в корреляции фотонов нелинейной резонансной флуоресценции......... 84
-3-
ГЛАВА 3. АНТИГРУППИРОВКА И СУБПУАССОНОВСКАЯ СТАТИСТИКА ФОТОНОВ В ИЗЛУЧЕНИИ НЕКОТОРЫХ МНОГОУРОВНЕВЫХ СИСТЕМ 92
3.1. Трехуровневая система; вторичное свечение при когерентном резонансном возбуждении................................... 93
3.2. Вторичное свечение трех- и четырехуровневых систем при широкополосном возбуждении. ’’Квантовые скачки"........... 98
3.3. Нелинейное резонансное вторичное свечение примесных центров
в кристаллах............................................. 109
3.4. О статистике фотонов в модели сверхизлучения Дике....... 122
ГЛАВА 4. ЛАЗЕРНАЯ ГЕНЕРАЦИЯ СУБПУАССОНОВСКОГО
СВЕТА............................................... 132
4.1. Статистика фотонов в лазерной генерации при субпуассоновской накачке. Стохастические скоростные уравнения............. 133
4.2. Статистика фотонов в лазерной генерации при субпуассоновской накачке. Уравнение Фоккера - Планка...................... 136
4.3. Субпуассоноская статистика фотонов, обусловленная кооперативной дезактивацией.............................. 140
4.4. Субпуассоновская статистика фотонов, обусловленная положительной взаимной корреляцией накачки и потерь...... 144
-4-
4.5. Субпуассоновская статистика фотонов, обусловленная положительной корреляцией скоростей накачки на рабочие уровни................................................. 146
ГЛАВА 5. СТАТИСТИКА ФОТОНОВ В СИСТЕМАХ С
ОТОЭЛЕКТРОННОЙ ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗЬЮ......................................... 149
5.1. Особенности статистики фотонов при наличии отрицательной обратной связи "фототок регистрации - накачка"..... 150
5.2. Генерация субпуассоновского света в схеме с параметрическим рассеянием и отрицательной обратной связью......... 163
5.3. Генерация на каскадных переходах при включении отрицательной обратной связи....................................... ^
ЗАКЛЮЧЕНИЕ............................................. 178
РАБОТЫ ДИССЕРТАНТА ПО ТЕМЕ ДИССЕРТАЦИИ................. 186
ЦИТИРУЕМАЯ ЛИТЕРАТУРА.................................. 192
-5-
ВВЕДЕНИЕ
В диссертации обобщаются исследования автора по теории нелинейных резонансных явлений в оптике, имеющих существенно квантовый характер Основное внимание сосредоточено на проявлениях динамики излучающих или преобразующих свет систем в статистических характеристиках света. Соответствующие экспериментально измеряемые величины - корреляционные функции интенсивности, спектр флуктуаций интенсивности (СФИ), распределения фотоотсчетов или задержанных совпадений фотоотсчетов. Их теоретические определения приведены в главе I.
’’Ключевые слова”, отвечающие основным изучаемым эффектам: антигруппировка фотонов (АГФ), субпуассоновская статистика фотонов (СПСФ, этот признак часто называют также амплитудным сжатием), провалы под дробовой уровень (уменьшение спектральной плотности флуктуаций фототока по отношению к спектральному уровню дробового шума, так называемому ’’квантовому пределу”).
Исследования статистических свойств света, в частности, флуктуаций равновесного излучения, сыграли, как известно, важную роль в становлении квантовой физики [1-5]. Уже на первом этапе развития квантовой электродинамики были разрешены противоречия корпускулярно -волнового дуализма, относящиеся к взаимодействию электромагнитного излучения с веществом. При последовательном анализе оптических явлений на основе квантовой электродинамики дискретность (локальность в
Публикации с участием диссертанта непосредственно но теме диссертации помещены после "Заключения”, перед общим списком цитируемой литературы (в котором они не повторяются); они расположены в хронологическом порядке и цитируются как [Д 1], [Д 3, 4], [Д 5 - 8]; в ссылке [Д 9, 10; 17 - 19] после точки с запятой - номера работ из общего списка.
-6-
пространстве - времени) регистрируемых элементарных актов передачи энергии, импульса и углового момента без противоречий дополняется волновым характером распространения и интерференции амплитуд вероятности [б - 10].
Вместе с тем, в теории множества линейных и нелинейных оптических явлений успешно применяется (и, без сомнения, будет применяться) полу-классический подход: описание атомов - квантовое, электромагнитного поля - классическое.
Результаты расчетов в таком подходе полностью согласуются с тем, что дает теория возмущений квантовой электродинамики (при надлежащем ’’сшивании” характеристик классической электромагнитной волны и квантового состояния поля в исследуемых условиях). Такой подход дает правильные результаты и в отношении первых (до - лазерных) экспериментов по гетеродинированию света, или оптическим биениям, по корреляциям интенсивности света независимых квазитепловых источников [И - 15], т.е. он в значительной мере применим и в задачах статистической оптики [16 - 19]. Вполне естественно, что теория лазеров развивалась во множестве работ в полуклассическом варианте (ограничимся указанием на хорошо известную статью и лекции У. Лэмба [20] и последнюю монографию Я.И. Ханина [21]).
Современная физика в целом не допускает, разумеется, сомнений в необходимости квантования поля для последовательного теоретического исследования оптических явлений. Включение в теорию поперечного электромагнитного поля как квантовой динамической системы требуется уже для правильного понимания квазистационарности возбужденных состояний атомов и молекул как следствия взаимодействия их с этим полем, далее - в теории спонтанного испускания, для расчета радиационных
-7-
ширин и сдвигов спектральных линий, в теории спонтанного комбинационного и параметрического рассеяния [22], сверхизлучения Дике [23 -26], для определения минимальной ширины линии генерации и анализа поведения лазера вблизи порога, статистики излучения [27 - 33].
Вскоре после создания лазеров, в развитие классической теории частичной когерентности [34], была построена последовательная квантовая теория оптической когерентности и фотонных корреляций; были разработаны экспериментальные методы и найдены разнообразные применения корреляционного анализа флуктуаций интенсивности [35 - 44]. С середины семидесятых годов расчеты оптических эффектов, включающие квантование электромагнитного поля в сочетании с общими методами теории случайных процессов [18, 19, 45 - 49], стали привычными в текущей литературе. Выделилось направление, получившее названия ”спектроскопия интенсивности”, ’’спектроскопия шумов”, ’’статистика фотонов”, ’’фотонные корреляции”.
В течение последних трех десятков лет в числе наиболее популярных в квантовой оптике были исследования условий формирования, свойств и применений ’’сжатого света” (англ. ’’squeezed light”) - квантовых состояний электромагнитного поля (оптического и ближних спектральных диапазонов), характеризуемых пониженным уровнем квантовых флуктуаций того или иного типа (амплитудным или фазово - чувствительным квадратурным сжатием).
Кроме специальных тематических выпусков и сборников статей (например, [50 - 54]) и обзоров [55 - 61; Д 20; 62 - 67], можно в настоящее время указать монографии [68 - 74], в значительной степени посвященные существенно неклассическим оптическим явлениям и методам их иссле-
-8-
дования. Журнал ’’Оптика и спектроскопия” с 1989 г. (Т. 66, выпуск 4) раз в два года выделяет один выпуск или часть выпуска для публикации материалов Всесоюзного (с 1998 г. - Международного) семинара по квантовой оптике в Минске.
В связи с таким направлением квантовой оптики актуален следующий принципиальный вопрос: при каких физических условиях и какого рода измерения в оптике могут дать результаты, количественное объяснение которых не допускает классического представления электромагнитного поля (классической ’’кинематики” света, регистрируемого прибором)? Другими словами: какими критериями выделяются ситуации, когда нельзя моделировать свет как классическое случайное поле с ’’подходящими” пространственно - временными статистическими характеристиками?
Поясним здесь кратко лишь существенные для дальнейшего критерии такого рода, связанные с корреляционными функциями флуктуаций интенсивности.
При классическом описании поля мы можем представлять себе интенсивности J\(t,r), ^(£,г) двух пучков света как некоторые конкретные функции координат и времени, априори случайные, но в каждой реализации определенные (независимо от измерения и способа обработки ансамбля результатов измерений в полном опыте). Тогда для средних по ансамблю выполняется неравенство
Ли = ЙЛ)2 < Й2)Й2>, Л = Ми, г;). (0.1)
В частности, при условии совместной стационарности случайных процессов J\ и Jч получаем
Й(0ЛЖтЛ)? <М1)М1)- (0.2)
-9-
Применительно к опыту по автокорреляциям интенсивности одного пучка
Неравенства (0.1) и (0.2) ограничивают сверху степень взаимной корреляции фотоотсчетов (скорость счета совпадений или задержанных совпадений). Неравенство (0.3) означает, что автокорреляционная функция интенсивности должна иметь максимум при нулевом времени задержки и тем самым исключает возможность антигруппировки фотоотсчетов. Далее, полуклассическая теория фоторегистрации [37 - 40] приводит к следующему выражению дисперсии числа фотоотсчетов в интервале времени Т:
Первое слагаемое соответствует распределению Пуассона и характеризует дробовой шум фоторегистрации, связанный с дискретностью элементарных актов фотоэффекта (представление о световых квантах здесь возникает, но остается ”не обязательным” при анализе как средней скорости счета, так и дробовой составляющей в (0.4)). Второе слагаемое в (0.4) обусловлено флуктуациями интенсивности. Оно неотрицательно при любой стохастическом моделировании классического поля. Таким образом, выражение (0.4) исключает возможность субпуассонов-ского распределения числа фотоотсчетов (с дисперсией D[n] < й).
В последовательной квантовой теории состояние электромагнитного поля не характеризуется значениями напряженностей и интенсивности в каждой точке пространства - времени, не зависящими от условий и
(0.3)
D[n] = n -(- q2D[U],
(0.4)
где q- квантовая эффективность фотоприемника,
(0.5)
-10-
фактического выполнения поверочных измерений. Эти величины в общем случае являются объективно неопределенными, они представлены в теории соответствующими операторами и сами по себе вообще не порождают никакого ансамбля. Не выделяется какой - либо определенный ансамбль и заданием состояния поля (статистического оператора), - им определяется лишь вся совокупность возможных результатов и распределений. Конкретный статистический ансамбль возникает как совокупность результатов измерений в опыте определенного типа [75, 76]. При этом опыты, в которых производится измерение различных наблюдаемых, могут оказаться несовместными.
Эти замечания общего характера нам представляются здесь уместными, поскольку теоретический анализ квантовых корреляционных характеристик включает прежде всего установление операторов наблюдаемых, измеряемых в соответствующих опытах. Заключительная - поверочная стадия полного опыта и непосредственный результат измерений описываются в терминах классической физики. В обсуждаемой области это, например, фактически зарегистрированное число фотоотсчетов или его среднее значение при автоматической обработке ряда измерений; среднее значение произведения двух фототоков; спектральная плотность флуктуаций фототока. Физический смысл таких величин как непосредственных результатов измерений может казаться вполне очевидным. Однако при теоретическом анализе необходимо тщательное ’’сшивание” классического описания отклика измерительного прибора и квантового описания исследуемого объекта. В случае корреляционных (многоточечных) характеристик оно далеко не столь очевидно (или привычно), как для простейших одночастичных наблюдаемых (например, для координат частицы, точнее - области ее локализации, еще точнее - области локали-
-11-
зации акта ее воздействия на детектирующее устройство). Квантово -механический анализ должен охватывать не только исследуемую систему (в нашем случае - свет, его источник и преобразователь), но и ’’границу” объект/прибор. Можно рассматривать явления в ’’пограничном слое” схематически (и это практически неизбежно), сдвигать эту ’’границу”, но нельзя размывать ее, - чтобы не исчезла сама возможность констатации определенных результатов измерения. Здесь неизбежен, по нашему мнению, некоторый эвристический момент.
Но в каждом конкретном случае мы должны сделать вполне определенное и конструктивное заключение следующего содержания: результат законченного опыта данного типа следует сопоставлять со средним значением
(А) = Бр^оЛ}, (0.6)
где ро - статистический оператор (матрица плотности) системы, А - относящийся к системе оператор, определенный в результате анализа процедуры измерений, в общем случае многовременной, в картине Гейзенберга (как и ро = />(*)е=о)’ ПРИТ0М Уже без учета взаимодействия системы с прибором в операторе эволюции 2. По существу, пример именно такого анализа применительно к статистике света дан в [35]; некоторое развитие подхода Глаубера - подробный вывод общего выражения спектра флуктуаций интенсивности (СФИ) приведен в разделе 1.1.
(по статье [Д 2]).
Рассмотрим теперь с этой точки зрения основные корреляционные характеристики в оптике и неравенства (0.1) - (0.3). Глаубером [35,36] было показано, что при использовании фотодетекторов с однофотон-
2 При наличии обратной связи ситуация может быть сложнее.
-12-
ным поглощением корреляционные функции фотоотсчетов всех порядков и кумулянтные моменты распределения числа фотоотсчетов определяются средними значениями нормально упорядоченных произведений полевых операторов. Так, при измерении средней интенсивности света результат пропорционален (Е^(х)Е^(х)) (мы используем обозначения, при которых для одной моды свободного поля £(+)(я) ~ аехр{—гиЬ], Е^(х) ~ а+ехр{( о;£}, где а - оператор уничтожения, так что ЕМ - положительно-частотная, отрицательно-частотная части оператора электрической напряженности электромагнитного поля). Скорость
счета задержанных совпадений определяется средним значением
<
{£<"> (*!)ЯМ (а;2)£(+) (Х2)£;(+) (*,)).
Эта величина не тождественна среднему значению произведения операторов ’’мгновенных интенсивностей” (Е^~\х{)Е^(Х{)) вследствие не-коммутативности полевых операторов. Таким образом, величина, которую естественно, по характеру процедуры измерения, рассматривать как меру взаимной корреляции потоков фотонов двух световых пучков, является средним значением новой наблюдаемой. Последняя не коммутирует (при £2 ф Ь) с наблюдаемыми, отвечающими измерению интенсивностей каждого из пучков каждым из фотодетекторов в отдельности; она возникает в связи с применением схемы, срабатывающей только на задержанные совпадения. Аналогична ситуация с автокорреляционной функцией фототока при исследовании одного светового пучка. Квантовые корреляционные функции не ограничены неравенствами вида (0.1)-(0.3). Оказываются возможными и неклассическая сверхгруппировка фотоотсчетов (’’избыточная” положительная квантовая корреляция фотонов), и антигруппировка. Следствием нетривиальных квантовых корреляций
-13-
может оказаться субпуассоновское распределение числа фотоотсчетов, запрещенное классическим соотношением (0.4).
Интерес диссертанта к существенно квантовым флуктуациям в оптике первоначально был в большой степени стимулирован лекциями Глаубера [35,36], а наиболее непосредственно - работами Е.Б. Александрова и его сотрудников [77-79] по спектроскопии интенсивности и обсуждением этих работ с авторами статьи [80]. В [78] убедительно показана необходимость квантово - электродинамического анализа спектра флуктуаций интенсивности обычного спонтанного излучения независимых атомов при широкополосном возбуждении. Представление о классическом волновом пакете Е = Еъехр(—^/2)соб’(о;о0 > испускаемом каждым атомом, приводит к неправильному предсказанию: в СФИ должны проявляться корреляции интенсивности в одном таком пакете (от одного атома) - лоренцев пик при о;«0с шириной 7. Эксперимент [78] надежно установил отсутствие этого пика над уровнем дробового шума в СФИ. Последовательный квантово - электродинамический расчет СФИ в этих условиях, выполненный Д.Ф. Смирновым и И.В. Соколовым [80], оказался в полном согласии с экспериментальными результатами [78] (см. также детальное обсуждение в
[44]). Дисперсия числа фотоотсчетов также не содержит признаков избыточной группировки на временах порядка 7”1 [Д 6]. Таким образом, указанное выше представление о классическом волновом пакете, часто используемое в учебной литературе по общему курсу физики и дающее правильное описание спектра спонтанного излучения и обычных (первого порядка) опытов по интерференции, полностью непригодно для анализа флуктуаций интенсивности.
В работе [78] не учитывалось повторное возбуждение одного и того же атома. Поэтому был сделан вывод, что при пуассоновской статистике
-14-
актов возбуждения невзаимодействующих атомов и при преобладающем доплеровском уширении спектральной линии эволюция состояния отдельного атома практически не проявляется в СФИ спонтанного излучения.
Такой вывод верен только в линейном по интенсивности света приближении, в частности, применительно к условиям эксперимента [78] (на них и был ориентирован расчет [80]). Эффект антигруппировки фотонов флуоресценции одного атома в этих условиях не мог быть обнаружен. С другой стороны, в эксперименте [79] по существу проявилась своеобразная группировка фотонов вторичного свечения пар атомов. По спектру флуктуаций фототока, вызванного спонтанным излучением, радиационная ширина 72 уровня 2, с которого происходил радиационный переход 2 —> 1, была измерена. Заселение уровня 2 производилось при индуцированных переходах с выше лежащего уровня 3. Детальный квантово -электродинамический расчет СФИ [Д 5] применительно к условиям работы [79] подтвердил, что появление такой линии и возможность ее выделения на фоне волнового и дробового шумов обеспечиваются квантовым интерференционным эффектом в процессе возбуждения атомов (3 —»• 2), тем более сильным, чем выше пространственная когерентность и интенсивность накачки 3 —> 2.
Дадим далее краткий обзор развития исследований по АГФ и СПСФ, ограничиваясь ссылками на обзорные статьи и только те из очень большого числа оригинальных работ данного направления, которые будут нужны нам в дальнейшем, и параллельно - ссылками на работы диссертанта (из списка с нумерацией [Д ...]). Здесь приходится подчеркнуть, что мы никоим образом не ставим своей задачей делать во ’’Введении” полный обзор работ по сжатым состояниям и лишь в малой степени затрагиваем исследования по квадратурному, фазово - чувствительному
-15-
сжатию.
Возможность ” отрицательной” парной корреляции во времени, т,е. антигруппировки фотонов (англ. апНЬипсЬ^), насколько нам известно, впервые была отмечена и в принципиальном аспекте пояснена Глаубером в его лекциях [35, с. 237], прочитанных в 1964 г. (в связи с указанными выше особенностями квантовых корреляционных функций, но без конкретных примеров). Такие корреляции упоминались и в некоторых статьях более формального характера, посвященных расширению класса когерентных состояний (лит. в [59,60, Д 20]. Отметим как одну из первых работу [81] и особенно статью [82], после которой резко повысился интерес к сжатым состояниям электромагнитного поля.
В 1976-77 гг. была теоретически предсказана АГФ в нелинейной резонансной флуоресценции (НРФ) одного атома [83 - 87, Д 1]. В [Д 1] рассмотрены и классифицированы также многоатомные эффекты.
Эффекты АГФ, СПСФ и квадратурного сжатия в нелинейной резонансной флуоресценции системы двухуровневых атомов рассмотрены в главе 2 диссертации по работам [Д 1, 3, 4, 6 - 9, 27].
Статья [88] явилась первым сообщением об экспериментальном наблюдении эффекта антигруппировки фотонов (см. также [89, 90]). Об аналогичных результатах позднее сообщалось в [91]. При определенных условиях (см. раздел 1.2) антигруппировка, всегда присутствующая в нелинейной резонансной флуоресценции одного атома, может приводить к субпуассоновской статистике фотоотсчетов [Д 3, 4, 6, 7; 92 - 95]. Этот эффект (хотя и очень слабый) был впервые обнаружен экспериментально в [96, 97]. В упомянутых выше опытах в качестве источника НРФ исполь-
-16-
зовались атомы натрия из сильно разреженного атомного пучка. Флуктуации числа атомов и вклад фотонов от пар независимых атомов ослабляли проявление АГФ. Значительно более сильные эффекты были продемонстрированы при анализе НРФ ионов в электромагнитных ловушках (ссылки и краткий обзор в [98]).
Уже в работе [Д 1] отмечалось, что многоатомный вклад в корреляционную функцию фототока при регистрации нелинейной резонансной флуоресценции системы атомов играет не только деструктивную роль по отношению к проявлению АГФ. Интерференционные вклады в корреляционную функцию отражают эволюцию индуцированного внешним полем дипольного момента атома и обращаются в нуль при нулевом времени задержки; они могут обеспечить квадратурное сжатие и даже антигруппировку фотонов (не связанную с восстановлением населенности верхнего уровня энергии атома). Этот тип фотонных корреляций исследовался теоретически в работах [Д 1; 99 - 102; Д 8, 9, 27]. В [102] сообщается об экспериментальном результате.
Отметим, что в спектре флуктуаций интенсивности НРФ проявляются, непосредственно или в измененном виде, черты оптического спектра НРФ, установленные ранее [103 - 105] (лит. - в [87, 106 - 108]).
Глава 3 содержит анализ этих эффектов в нелинейном резонансном вторичном свечении более сложных систем.
Естественным обобщением явились работы по фотонным корреляциям в нелинейном вторичном свечении трехуровневых и четырехуровневых систем при когерентном и некогерентном возбуждении [109 - 113; Д 10, 25, 41]. Такие системы, однако, привлекают пока внимание не столько возможностью прямого наблюдения АГФ в комбинационном рассеянии, сколько использованием их для обнаружения ’’квантовых скачков”
-17-
(лит. в [98, 112, 113, Д 25]).
Эффекты АГФ и СПСФ могут проявляться и во вторичном свечении вибронных (электронно - колебательных) систем - молекул и примесных центров в кристаллах — при интенсивном резонансном возбуждении. Линейное [114 - 119] и нелинейное [120 - 124] вторичное свечение таких систем включает когерентное (рэлеевское) и комбинационное рассеяние, квазиравновесную и горячую люминесценцию. Электронноколебательное взаимодействие, многоступенчатая релаксация и квантовая интерференция амплитуд переходов обуславливают усложненный вид оптического спектра, корреляционных функций и спектра флуктуаций интенсивности. Теория АГФ и СПСФ для таких систем развивалась группой физиков в Иене (наиболее полное изложение результатов в диссертации [125] и статье [126] ) и в работах [Д 16, 17, 26], в диссертации [127].
В [Д 32, 33, 37], в диссертации [128] исследуется кинетика атомных возбуждений и статистика фотонов сверхизлучения в модели Дике [23 -26], в продолжение работ [129 - 132].
Во всех описанных выше случаях формирования АГФ и СПСФ повышение регулярности потока фотонов по сравнению с пуассоновским обусловлено самой динамикой взаимодействия атомных систем с возбуждающим излучением. Но такого рода регуляризация может быть внесена на разных участках потока превращений элементарных возбуждений.
По - видимому, впервые в работе [133] была высказана идея о переносе субпуассоновской статистики актов возбуждения атомов в субпуассонов-скую же статистику испускаемых фотонов (весьма подробный анализ на основе теории точечных случайных процессов дан в статье [134] и в обзоре [62]). В [133] был предложен и конкретный метод - возбуждение
-18-
атомов в разрядной трубке Франка и Герца в условиях сильного подавления дробового шума электронов действием пространственного заряда
[45]). Эксперимент [135] дал положительный результат, хотя субпуассо-новский эффект был весьма малым вследствие того, что при наблюдении возбуждаемой электронными ударами люминесценции от статистики возбуждающих электронов к статистике фотоэлектронных импульсов регистрации ведет цепочка биномиальных преобразований, ослабляющая любые корреляции.
В статьях и докладах [Д 11, 13 - 15, 18-20] показано, что субпуассо-новский характер эффективного заселения верхнего уровня излучатель-ного перехода может быть обусловлен кооперативными процессами - парной дезактивацией: если пары атомов, возбуждаемых близко по времени, вследствие взаимодействия выходят из канала излучения (оба в паре или хотя бы один), то ”непоявление” соответствующих пар фотонов означает АГФ и может проявиться как СПСФ, причем не только в люминесценции [Д И, 15, 20], но и в лазерной генерации [Д 13, 14, 18 - 20]. По результату это аналогично фильтрации излучения двухфотонным поглотителем [56, 58, 62; Д 31].
В отношении теории и наблюдения АГФ в люминесценции бихромофоров отметим работы [136, 137]. Вариант СПСФ при кооперативной дезактивации мы рассматриваем подробно, наряду с другими методами лазерной генерации субпуассоновского света, в главе 4.
Первой из известных нам работ по СПСФ в лазерной генерации при подавлении дробового шума накачки является статья Ю.М. Голубева и И.В. Соколова [138]. Рассматривалась квазистационарная одномодовая генерация при возбуждении периодическими сильными короткими импульсами, каждый из которых (в идеальном случае) переводит на верхний
-19-
рабочий уровень все активные в генерации атомы. При этом предсказаны АГФ и СПСФ; если время жизни атомов на верхнем рабочем уровне (без учета индуцированных переходов) много меньше, чем на нижнем, при сильном превышении порога генерации достигается почти полное подавление дробового шума фототока при регистрации генерируемого света. В [138] анализ проведен на основе квантовой теории одномодовой генерации Лэмба и Скалли [27, 28, 32]; авторами [138] сделано существенное уточнение этой теории в описании статистики возбуждения активной среды. А именно, показано, что результаты теории Лэмба и Скалли, как и других вариантов квантовой теории генерации [29 - 33], относятся к случаю пуассоновской статистики актов возбуждения. Повышение регулярности накачки при прочих оптимальных условиях приводит к СПСФ.
Этот вывод был подтвержден для более общего случая произвольной (не обязательно абсолютно регулярной) субпуассоновской накачки [Д 18 - 20]; при этом в работе [Д 19] результат не ограничен приближением Лэмба - Скалли, т. е. относится к более широкому классу лазеров.
В [139, 140] идея естественного подавления флуктуаций накачки электронным пучком в трубке Франка - Герца [133 - 135] была развита применительно к инжекционному току в полупроводниковых светодиодах и лазерах.
После первых положительных экспериментальных результатов - снижения под дробовой уровень мощности шума фототока от излучения полупроводникового лазера [141, 142], резко повысился интерес к лазерной генерации субпуассоновского света [143 - 155] (далеко не полный список работ по проблеме, но содержащий работы, наиболее существенные по мнению диссертанта). Насколько нам известно, наилучший экспериментальный результат - подавление флуктуаций фототока от излучения по-