Содержание
ВВЕДЕНИЕ 5
1 Исследование оптической системы астрогеодезической камеры SBG и оценка точности определения положений астрономических объектов по снимкам, полученным на ней 21
1.1 Астрогеодезичсская камера SBG и методика наблюдения на
ней геосинхронных спутников ............................ 21
1.2 Определение постоянных оптической системы камеры SBG 23
1.3 Методика и программное обеспечение астрометрической
обработки снимков SBG.................................... 25
1.4 Оценка точности измерений снимков SBG ................... 26
1.4.1 Исследование координатно-измерительного прибора ASCORECORD............................................. 26
1.4.2 Оценка точности измерений на ASCORECORDe прямоугольных координат изображений звезд и ГСС на снимках, полученных на SBG......................... 28
1.4.3 Оценка точности автоматических измерений на измерительной машине ФАНТАЗИЯ .............................. 29
1.5 Оценка точности определения сферических координат звезд
и ГСС по снимкам SBG..................................... 31
1.5.1 Оценка точности определения фотографического положения объекта в идеализированных условиях . 32
1.5.2 Оценка точности определения координат звезд с использованием астрометрического стандарта .... 36
2 Численное моделирование движения геосинхронных спутников 40
2.1 Вводные замечания........................................ 40
2.2 Дифференциальные уравнения движения ИСЗ.................. 40
2.3 Математическое моделирование возмущающих сил .... 44
2.3.1 Используемые системы координат..................... 44
2.3.2 Вычисление возмущений от геомотенциала............. 46
2
2.3.3 Вычисление лунно-солнечных возмущений.............. 48
2.3.4 Возмущения от приливной деформации Земли ... 49
2.3.5 Возмущения от прямого светового давления и отраженной солнечной радиации................................. 50
2.4 Характеристика программы ’’Численная модель движения ИСЗ”................ . ..........•........................... 52
2.5 Оценка точности интегрирования уравнений движения ГСС методом Адамса-Мультона-Коуэлла 8 порядка на интервале времени 10 лет ....................................... 53
2.6 Анализ структуры возмущений орбитального движения ГСС 58
2.6.1 Методика численного исследования структуры возмущений ГСС............................................... 58
2.6.2 Возмущения, связанные с геопотенциалом ............ 59
2.6.3 Оценка влияния притяжения Луны и Солнца. Совместное влияние различных факторов....................... 63
2.6.4 Влияние светового давления ........................ 65
3 Численное моделиррвание задачи отождествления наблюдений гео-синх ровных спутников. Каталогизация 66
3.1 Вводные замечания........................................ 66
3.2 Методы идентификации измерений небесных объектов . . 67
3.3 Методики отождествления наблюдений ГСС на коротком временном интервале........................................... 72
3.4 Разработка критериев отождествления наблюдений ГСС
методами численного моделирования........................ 74
3.4.1 Оценка ошибки, вызванной неучтенными возмущениями на интервале наблюдений............................. 74
3.4.2 Оценка точности определения эллиптической орбиты методом Лапласа по трем измерениям..................... 75
3.4.3 Оценка точности определения круговой орбиты по двум измерениям........................................... 76
3.5 Отождествление наблюдений либрационных спутников . 82
3.6 Описание каталогов наблюдений, полученных в АО УрГУ 83
4 Численное моделирование долговременной эволюции орбит ГСС по фотографическим наблюдениям, полученным в АО УрГУ 84
4.1 Характеристика наблюдательного материала................. 84
4.2 Улучшение элементов орбит по фотографическим наблюдениям ....................................................... 86
4.2.1 Программа улучшения орбит’’ОРБИТА ГСС” ... 86
3
4.2.2 Определение и улучшение элементов орбит 8р1 и БрЗ 86
4.3 Численное прогнозирование движения ГСС на больших интервалах времени. Представление элементов орбит, полученных по наблюдениям. Определение либрационных параметров ГСС ............................................ 87
4.3.1 Эволюция орбиты ГСС 8рЗ....................... 87
4.3.2 Эволюция орбиты 8р1 ГСС....................... 87
4.4 Отождествление ГСС на больших интервалах времени . . 91
4.4.1 Методика отождествления ГСС .................. 91
4.4.2 Отождествление ГСС БрЗ........................ 92
ЗАКЛЮЧЕНИЕ 99
БИБЛИОГРАФИЯ 101
4
ВВЕДЕНИЕ
Актуальность работы. В течение сорокалетнего периода использования космического пространства в интересах человечества созданы самые различные искусственные аппараты, предназначенные для решения научных и прикладных народно-хозяйственных задач, и среди них геосин-хронные искусственные спутники Земли (ГСС), особенностью которых является соизмеримость движения спутника по орбите с вращением Земли по типу 1:1. Это обстоятельство позволяет использовать ГСС для связи, навигации, сбора информации в течение длительного времени с отдельных участков земной поверхности, уточнения параметров гравитационного поля Земли и других геодинамических параметров, а также для решения ряда небесно-механических задач, таких как исследование резонансных и почти резонансных движений, изучение влияния внешних тел на движение объектов в околоземном космическом пространстве и т.п.
Для обеспечения успешного функционирования ГСС в космосе и решения научных и научно-прикладных задач необходимо периодически уточнять их динамические характеристики. Для этого следует регулярно проводить наблюдения ГСС и исследовать их орбитальное движение. Целью такого исследования является получение оценок влияния на движение ГСС различных возмущающих факторов и создание на основе этих оценок аналитической теории или алгоритмов численного моделирования движения ГСС необходимой точности.
Практическая значимость геостационарной орбиты определяет стремительный рост количества находящихся на ней объектов. Среди 700 регистрируемых в последнее время оптическими средствами геосинхрон-ных спутников примерно 70% составляют пассивные объекты. Это либо прекратившие активную работу спутники, либо выведенные на орбиту вместе с ними апогейные двигатели, первые ступени ракет и др., либо объекты, являющиеся результатом разрушения некоторых спутников. Пассивные объекты движутся в свободном неуправляемом режиме, и с одной стороны служат средством для изучения физических свойств данной области космического пространства, а с другой - представля-
5
ют определенную опасность для активно функционирующих спутников, являясь космическим мусором.
В связи с этим остаются актуальными задачи каталогизации, изучения орбитального движения геосинхронных спутников и контроля состояния геостационарной области [82, 83]. При этом из-за высокой плотности ГСС в отдельных областях геостационарной зоны и несовершенства методик их идентификации серьезной проблемой является отождествление объектов, зарегистрированных во время наблюдений, с известными спутниками.
При решении перечисленных задач важную роль играют позиционные наблюдения ГСС. Вследствие значительной удаленности геосинхронных объектов от Земли наблюдать их радиотехническими средствами и средствами лазерной локации пока практически невозможно. Еще не получили широкого распространения в нашей стране оптико-электронные наблюдения, весьма дорогостоящими являются ПЗС-наблюдения. Выполненные на астрономических телескопах, оснащенных всем необходимым, фотографические наблюдения и по сей день остаются основным методом массового определения высокоточных координат ГСС для решения как научных, так и прикладных задач [3].
На Астрономической обсерватории Уральского университета (АО Ур-ГУ) фотографические наблюдения ГСС выполняются на астрогеодезической камере БЕЮ. Ввод в действие этого телескопа потребовал создания соответствующих методик и вычислительных программ для обеспечения всего научно-исследовательского цикла и инициировал решение ряда задач на основе наблюдений ГСС, полученных на нем.
Целью настоящей работы является создание методического и программного обеспечения астрометрической обработки выполненных на БЕЮ фотографических наблюдений геосинхронных спутников и определения элементов их орбит, разработка методики отождествления наблюдений ГСС и численное исследование эволюции орбит ГСС на основе этих наблюдений.
При выполнении работы ставились следующие задачи:
- исследование астрометрических характеристик камеры БЕЮ;
- создание алгоритма для определения положений ГСС, исследование точности определения сферических координат различных ГСС в зависимости от условий обработки;
- составление алгоритмов и программ определения первоначальных элементов орбит и оценка их точности;
- исследование структуры возмущений орбитального движения ГСС путем численного моделирования, оценка влияния на движение ГСС основных возмущающих факторов на различных временных интервалах и формирование на основе полученных оценок модели движения ГСС в зависимости от требуемой точности прогноза;
- численное моделирование задачи отождествления наблюдений ГСС, разработка критериев отождествления.
- разработка методик наблюдений ГСС, получение и астрометрическая обработка наблюдательного материала, определение из наблюдений элементов орбит геосинхронных спутников и составление каталогов точных положений и орбит ГСС;
- исследование эволюции орбит избранных ГСС на интервалах времени 10 и более лет; сравнение элементов орбит, полученных путем численного моделирования движения отдельных спутников, с параметрами их орбит, полученных из наблюдений.
Научная новизна. На Астрономической обсерватории Уральского гос-университета с 1981 года регулярно проводятся наблюдения геосинхронных ИСЗ по двум научным программам:
- исследование орбитального движения избранных геосинхронных спутников по достаточно полным рядам высокоточных позиционных наблюдений, полученным за длительное время.
- обзорные наблюдения геостационарной области космического пространства.
Обе программы нацелены на получение новых наблюдательных данных для решения научно-исследовательских задач фундаментального и прикладного характера и выполняются при участии соискателя.
При выполнении данной работы были исследованы астрометрические характеристики короткофокусного телескопа системы Шмидта - камеры SBG, на которой производятся наблюдения ГСС в АО УрГУ. Создано методическое и программное обеспечение наблюдений на этом телескопе стационарных и квазистационарных ИСЗ, астрометрической обработки снимков и определения орбит; исследована точность определения положений звезд и ГСС по снимкам, полученным на SBG. Проведены наблюдения примерно 50 ГСС, составлены каталоги положений всех и каталог элементов орбит избранных геосинхронных спутников, наблюдавшихся в АО УрГУ. Каталоги содержат около 15 тысяч положений различных ГСС и элементы около 500 орбит.
Созданы методика идентификации наблюдений ГСС при первоначальной обработке наблюдательного материала и методика отождествления
7
избранных ГСС по наблюдениям на большом временном интервале.
Впервые на основе наблюдений получены оценки точности численного прогнозирования движения ГСС на интервалах времени до 10 лет с помощью ’’Численной модели движения ИСЗ”, разработанной в НИИПММ при Томском университете; получены оценки влияния основных возмущающих факторов на движение ГСС на различных временных интервалах.
По результатам наблюдений и путем численного моделирования движения впервые исследована эволюция элементов орбит двух геосинхрон-ных спутников на интервале времени 7 и 11.5 лет.
Научная и практическая ценность. В процессе исследования разработано и сформировано полное математическое и программное обеспечение всего исследовательского цикла от получения и обработки наблюдений на значительных интервалах времени до исследования параметров движения и вычисления эфемерид. Создание этого обеспечения дает возможность АО УрГУ работать в автономном режиме, независимо от поступления эфемерид из спутниковых центров, что в настоящее время очень важно. Полученные по фотографическим наблюдениям каталоги точных положений и орбит ГСС и результаты анализа структуры возмущений орбитального движения ГСС могут быть использованы при разработке алгоритмов прогнозирования движения ГСС и оценке их точности, а также для решения иных задач небесной механики и геодинамики.
Каталоги положений ГСС, полученные в обсерватории УрГ'У, были переданы в Институт астономии РАН, ИТА РАН, НИИ ПММ при ТГУ и другим заинтересованным организациям.
На защиту выносятся:
1. Результаты исследования астрометрических характеристик камеры SBG АО УрГУ, методики наблюдений ГСС и определения точных положений звезд и ГСС по снимкам SBG; оценка точности вычисления сферических координат спутников.
2. Оценка точности моделирования движения ГСС при помощи программы ’’Численная модель движения ИСЗ”, разработанной в НИИПММ при ТГУ, анализ структуры возмущений орбитального движения ГСС.
3. Методика идентификации ГСС, основанная на численном моделировании движения спутников и определении элементов их орбит по фотографическим наблюдениям.
4. Результаты наблюдений ГСС: каталоги положений и элементов орбит избранных ГСС (1987-1998гг.); каталоги экваториальных топоцен-трических координат ГСС, полученные по обзорным наблюдениям (1984-
8
1995гг.).
5. Результаты исследования эволюции орбит двух неизвестных ГСС на временных интервалах 7 и 11.5 лет.
Апробация работы.
Основные результаты работы докладывались автором на Всесоюзных совещаниях по проблемам наблюдений высокоорбитальных спутников Земли для решения научных и прикладных задач в Душанбе (1985), Алма-Ате (1986), Иркутске (1987), Суздале (1988), Ашхабаде (1989), Ужгороде (1990), Свердловске (1991), CAO РАН (1993); на 23-й астрометрической конференции СССР (Пулково,1985), на Всесоюзной школе по теоретической и практической астрономии (Тирасполь, 1983), на Объединенном астрометрическом семинаре ГАО АН УССР (Киев, 1986), на X объединенных научных чтениях по космонавтике, посвященных памяти выдающихся советских ученых - пионеров освоения космического пространства (Москва, 1987), на международной научной конференции ’’Всеси-бирские чтения по математике и механике” (Томск, 1997), на региональной научно-практической конференции, посвященной 150-летию фирмы Карл Цейсс (Екатеринбург, .1997), на Всероссийской научной конференции ’’Фундаментальные и прикладные проблемы современной механики” (Томск, 1998), на студенческих научных конференциях ’’Физика космоса” (Екатеринбург), на семинарах кафедры астрономии и геодезии и АО Ур-ГУ.
Всего по теме диссертации опубликовано 25 научных статей.
Основные результаты диссертации содержатся в 21 публикации [13, 6, 26, 27, 28, 29, 30, 31, 32, 57, 56, 53, 47, 55, 48, 49, 54, 52, 51, 50, 130].
Личный вклад автора. Автором разработаны методики наблюдений на камере SBG геосинхронных спутников, составлена оригинальная методика определения эфемерид пассивных ГСС графическим способом, проведена б бльшая часть наблюдений и выполнен анализ результатов; разработан алгоритм определения топоцентрических координат ГСС по спут-никограммам SBG и исследована точность определения положений звезд и ГСС по снимкам SBG. Автором проведен также анализ точности численного интегрирования уравнений движения ГСС и исследована структура возмущений орбитального движения ГСС на интервалах времени до 10 лет, получены оценки точности определения элементов предварительных орбит и разработаны методики отождествления наблюдений ГСС и идентификации ГСС по наблюдениям на большом интервале времени; исследована долгосрочная эволюция орбит двух неизвестных ГСС и успешно выполнено их отождествление с объектами опорных каталогов.
9
Автором данной работы при участии студентов и сотрудников УрГУ было проведено исследование оптической системы SBG и координатноизмерительного прибора ASCORECORD-E2, созданы методики и программы астрометрической обработки снимков SBG, определения орбит и отождествления наблюдений FCC; проведена обработка наблюдательного материала, составлены каталоги положений и элементов орбит ГСС.
В совместных работах с сотрудниками АО УрГУ и студентами автору данной работы принадлежит постановка задач, идеи их решения, непосредственное участие в создании алгоритмов и вычислительных программ, получение и обработка основной части наблюдательного материала и анализ результатов.
В совместных публикациях научному руководителю принадлежит общая постановка задачи, обсуждение результатов, соискателю - получение наблюдательного материала, его обработка, численные исследования и анализ результатов.
В работе [47] приведены значения постоянных оптической системы SBG, полученные по методике А.А.Киселева, основанной на геометрическом методе определения координат астрономических объектов. Эти результаты были получены совместно с А.А.Киселевым и Г.П.Хремли.
В совместной работе [130] Г.Т.Кайзер принадлежит получение и обработка наблюдательного материала, измерения на ASCORECORDe, определение орбит и представление наблюдений, анализ результатов. Измерения на ФАНТАЗИИ и оценка точности этих измерений (по внутренней сходимости) были выполнены Е.В.Поляковым.
Объем и структура диссертации.
Диссертация состоит из введения, четырех глав, заключения, списка использованных литетатурных источников и 2 Приложений. Общий объем - 166 страниц, включая 13 рисунков, 21 таблиц. Список цитируемой литературы содержит 143 наименования.
Постановка задачи.
Активное изучение особенностей движения геосинхронных спутников было начато задолго до их запусков. Первые работы в этом направлении были сделаны Ю.В.Батраковым [4] и В.К. Абалакиным [1] в 1957 г За сорок лет, прошедших с тех пор, выполнено большое количество теоретических исследований, в которых достаточно подробно изучены свойства движения ГСС, построены достаточно полные аналитические, полуаналитические и численные модели движения этих спутников.
Ю
Детальный анализ результатов исследований, выполненных до 1981 года, приведен в обзоре С.Г.Журавлева [45]. Отметим лишь некоторые из исследований этого периода.
L.Sehnal [138], J.H.Hutcheson [128], A.Cook [122], R.Allan[l 11], F.Perkins [137], С.Г.Журавлев [42] и др. провели анализ орбит и выполнили простейшие расчеты по выяснению особенностей движения ИСЗ в окрестности соизмеримости 1 : 1. При этом в разложении геопотенциала учитывались лишь гармоники второго порядка V2.0 и 1^,2 • Исследования показали, что основной причиной, вызывающей возмущения орбит ГСС, является полярное сжатие и экваториальная эллиптичность Земли. Под действием возмущений от эллиптичности земного экватора в движении ГСС появляются долгопериодические изменения в радиусе-векторе и в долготе спутника. A.Cook [122], R.Allan[111] и F.Perkins [137] сделали вывод о существовании устойчивых точек либрации на пересечении орбиты ГСС с продолжением малой оси земного экватора. Смещение спутника от номинального положения на 24-часовой орбите, вычисленной без учета эллиптичности экватора, происходит в направлении вращения Земли, если высота спутника меньше, чем высота номинальной орбиты, и в обратном направлении, если спутник движется над номинальной орбитой.
Дальнейшие исследования по данной проблеме были связаны с изучением влияния на движение резонансных ИСЗ (в том числе и ГСС) большого числа гармоник в разложении геопотенциала, притяжения Луны и Солнца, а также светового давления, как основного негравитационного фактора, вызывающего заметные изменения орбиты ГСС. Рассматривалось действие как каждого фактора в отдельности, так и их совместное влияние.
Так в работах R.R.Allan [112, 113], L.Blitzer [119], G.Gedeon и др [127],
В.Garfinkei [126] были получены аналитические выражения для возмущений всех кеплеровых элементов С ТОЧНОСТЬЮ ДО е2 ОТ гармоник V2.0-V44, числовые значения возмущений для тех же элементов, численно и аналитически исследованы колебания ГСС по Л и г от всех тессераль-ных и секториальных гармоник до 4 порядка и получены выражения для амплитуды и периодов колебаний. G.Gedeon [127] была разработана теория определения резонансных возмущений в долготе спутника. R.R .Allan [113] получены приближенные уравнения колебаний ГСС по долготе (ли-брационный и ротационный режимы) в зависимости от любого долготного члена возмущающей функции. Определена ширина резонансной ли-брационной полосы (« 36 км) по большой полуоси суточного спутника. Было показано также, что период либрационного колебания спутника,
11
когда он находится вблизи точки либрации, равен примерно 800 суткам.
Предварительный анализ и оценки возмущений в движении суточного спутника на почти круговой орбите из-за притяжения Луны и Солнца были выполнены в работах L.Sehnal [138], J.Kovalevsky [131], L.Blitzer и других [118], R.R.Allan и G.E.Cook [114]. Численные расчеты показали, что в среднем вековые возмущения элементов орбит от Луны в 2 -3 раза больше соответствующих возмущений от Солнца. Но суммарные величины лунно-солнечных возмущений в 2 - 3 раза меньше величин, обусловленных сжатием Земли. Обнаружено также, что плоскость орбиты спутника прецессирует относительно земной оси, определены периоды этого прецессионного движения. Y.Kozai [132] предложил новый метод учета возмущений от Луны и Солнца. Возмущающая функция выражается как обычно через их геоцентрические координаты. Затем вековые и долгопериодические возмущения в движении ИСЗ определяются численно, а короткопериодические - аналитически. Таким способом Y.Kozai [132] исследована эволюция наклонения.
В работах R.H.Estes [124] и Н.В.Емельянова [39] предложен метод вычисления лунно-солнечных возмущений в движении ИСЗ, основанный на представлении координат Луны и Солнца теориями Хилла-Брауна и Ньюкома соответственно.
Детальное исследование лунно-солнечных гравитационных возмущений в движении геостационарного спутника впервые в нашей стране было выполнено Б.К.Мартыненко [74]. Он построил аналитическую теорию лунно-солнечных гравитационных возмущений суточного спутника, получил выражения для вековых и периодических возмущений первого порядка во всех элементах орбит.
Из негравитационных возмущений наиболее ощутимыми являются возмущения от сил светового давления. Учет светового давления при прогнозировании движения ГСС аналитическими методами является достаточно серьезной проблемой из-за разрывности возмущающей функции, обусловленной эффектом тени. Вопросами влияния светового давления на движение суточных спутников различных размеров и различной формы (диск, линза, баллон) на начальном этапе исследований занимались
A.Lubawe [134], К.П.Ивановская [46], С.Zee [141] и другие. Было показано, что в зависимости от значений параметра, прямо пропорционального миделеву сечению и отражательной способности поверхности спутника и обратно пропорционального массе, спутник может совершать колебательное движение относительно устойчивой точки либрации, уходить от нее на некоторое расстояние или покидать сферу действия Земли.
12
С.Zee [141] было обнаружено, что эффект давления солнечной радиации на движение суточного спутника с малым наклоном выражается в периодических возмущениях эксцентриситета с периодом 1 год и перемещении линии апсид. Эффект тени при этом не учитывался.
Таким образом, к началу 80-х годов основные свойства движения суточного спутника были изучены. На основании полученных результатов были разработаны теории, описывающие с достаточно высокой точностью движение ГСС.
Наиболее законченные аналитические и численно-аналитические теории движения ГСС представлены в работах С.Г.Журавлева [43, 44], М.А.Вашковьяка [24, 25, 23], А.С.Сочилиной и И.С.Гаязова [33, 89, 90], C.H.Zee [142], С.С.Chao и J.M.Baker [120].
С.Г.Журавлевым [43, 44] построена аналитическая теория движения ГСС, в которой учитываются возмущения от нецентральности гравитационного поля Земли (зональные гармоники до четвертого порядка включительно и секториальная гармоника второго порядка), притяжение Луны и Солнца. При построении теории использовалось две системы элементов для орбит в большими и малыми наклонениями. Методом Крылова-Боголюбова осуществлялось осреднение возмущающей функции по времени. В промежуточной орбите учитывалось влияние гармоник J2(b^22 И хилловские члены от притяжения Луны и Солнца. Для элементов промежуточной орбиты найдены аналитические выражения для вековых, долгопериодических и короткопериодических возмущений первого порядка. Оценки элементов, полученные с помощью разработанной теории, на интервале 60 оборотов ГСС неплохо совпадают с результатами численного интегрирования и с наблюдениями.
М.А.Вашковьяком [23, 24, 25] предложен приближенный метод расчета движения ГСС, учитывающий возмущения от Луны, Солнца,
нецентральности земного гравитационного поля, светового давления и пригодный на интервале времени порядка ста суток. В качестве основных переменных используются элементы второй канонической системы Пуанкаре. С помощью канонического преобразования из гамильтониана исключаются быстрые угловые переменные, связанные с орбитальным движением спутника и вращением Земли. Полученные квазивеко-вые уравнения интегрируются численным способом, что позволяет при заданной точности повысить'быстродействие программы по сравнению с численным методом интегрирования уравнений движения в прямоугольных координатах.
В программе учитывается влияние всех зональных и тессеральных гар-
13
моник геопотенциала до 6-го порядка, а также гармоник с индексами пт: 62, 64, 66.
Основное ограничение на параметры орбиты связано с величиной эксцентриситета, который предполагается не превосходящим 0.01. На наклонение никаких ограничений не накладывается. Кроме того, в данной программе не учитывается вхождение ИСЗ в тень Земли, поэтому предполагается, что отношение миделева сечения к массе спутника не превышает
0.05 м2/кг, тогда влиянием экранировки можно пренебречь.
Точность созданного М.А.Вашковьяком метода [24] в конце стосуточного интервала оценена величиной порядка 500м вдоль орбиты и порядка 15м по радиусу и бинормали. Оценка точности была проведена путем сравнения с эталонными расчетами, выполненными численным интегрированием уравнений движения спутника в прямоугольных координатах.
А.С.Сочилиной и др. [33, 89, 90] разработана аналитическая теория движения ГСС, позволяющая представлять движение ГСС с точностью 2"-3" на интервалах до 30 суток. Эта теория учитывает главные возмущающие факторы гравитационного происхождения: несферичность Земли, притяжение Луны и Солнца. В качестве основной координатной плоскости в теории принята плоскость Лапласа. Использование этой плоскости равносильно введению такой промежуточной орбиты, которая учитывает самые существенные долгопериодические возмущения от Луны и Солнца. Это позволяет в пределах обозначенной точности ограничиться теорией первого порядка относительно других возмущающих факторов.
Разработанная А.С.Сочилиной методика реализована в виде программ, позволяющих выполнять прогнозирование элементов орбит и вычислять эфемериды, представлять наблюдения и улучшать первоначальные элементы. Она использовалась при создании в ИТА РАН Каталога орбит геостационарных спутников [59, 92] на основе данных NASA, ESOC [129] и результатов наблюдений ГСС, полученных в обсерваториях СНГ.
Аналитические теории, позволяющие прогнозировать движение ГСС на коротком интервале времени с точностью, соответствующей наблюдениям, созданы также P.Legendre [133], J.C.Van der На [140],
В.А.Тамаровым и др. [15], Е.И.Тимошковой и Е.Н.Поляховой [78, 99, 100], Э.Д.Кузнецовым [68, 69, 70, 71]. Рассмотрим некоторые из них подробнее.
В работах Е.И.Тимошковой и Е.Н.Поляховой [78, 99, 100] построена приближенная аналитическая теория движения стационарного ИСЗ в сферических координатах, в которой учитывается нецентральность гра-
14
- Київ+380960830922