Оглавление
Введение...............................................................3
Глава 1. Напряженное состояние тонкого покрытия при действии периодической системы поверхностных сосредоточенных сил...............14
1.1 Постановка задачи..............................................16
1.2 Основные соотношения...........................................18
1.3 Периодическое решение при силовых сосредоточенных
воздействиях........................................................25
1.4 Напряжения в слое..............................................30
Глава 2. Устойчивость плоской формы напряженного пленочного покрытия при поверхностной диффузии............................................36
2.1 Постановка задачи..............................................37
2.2 Уравнение движения точек поверхности деформируемого тела при
поверхностной диффузии..............................................41
2.3 Удельная энергия упругой деформации............................43
2.4 Анализ устойчивости плоской формы поверхности пленки...........50
Глава 3. Комбинированный эффект влияния объемной и поверхностной диффузии на развитие рельефа поверхности пленочного покрытия..........55
3.1 Постановка задачи..............................................56
3.2 Уравнение движения точек поверхности деформируемого тела при
поверхностной и объемной диффузии...................................58
3.3 Влияние различных факторов на развитие рельефа пленочного
покрытия............................................................64
3.4 Концентрация напряжений на искривленной поверхности пленочного
покрытия............................................................74
Заключение............................................................80
Литераз ура...........................................................84
Введение
Гетероэпитаксиальные структуры с полупроводниковыми пленочными покрытиями получили широкое применение в электронной и оптоэлектронной промышленности. К примеру, пьезоэлектрическая или пьезорезистивная тонкая пленка, выращенная на кремниевой мембране, может быть использована для электронного определения прогиба мембраны вследствие внешнего воздействия на ее поверхность [1]. Возможность продолжительной эксплуатации приборов микроэлектроники и оптоэлектроннки в значительной мере зависит от стабильности их физических свойств и от стабильности образующих их тонкопленочных структур.
Вместе с тем, тонкие пленки из-за своих особых свойств, таких, как большое отношение поверхности к объему, высокая плотность структурных дефектов и возможные большие градиенты механических напряжений, представляют собой весьма неравновесные образования [2]. Существует ряд серьезных проблем технологического характера, связанных с неустойчивым состоянием формы поверхности пленки и ее морфологическим изменением с течением времени. Прежде всего, изменение формы поверхности может происходить на этапе выращивания и термической обработки пленочного покрытия, сопровождаемые процессами конденсации и испарения [3]. При этом вследствие рассогласования параметров кристаллических решеток пленки и основного материала, в пленке возникают достаточно большие сжимающие напряжения порядка 1-2,5 ГГ1а [4], а на межфазной границе скапливаются дислокации несоответствия [5]. Интенсивный нагрев [6, 7, 81 и большие напряжения [9] превращают первоначально гладкую поверхность пленки в шероховатую, что негативно отражается на ее электрических и оптических свойствах. Данный феномен подтвержден многочисленными
3
теоретическими и экспериментальными исследованиями, в которых описаны различные конфигурации рельефа, включая островки [10, 11], слабую волнистость [12], острые выступы и впадины [13]. Но, несмотря на часто наблюдаемые морфологические изменения поверхности пленки, причина таких изменений остается до конца не выясненной и вызываем' многочисленные дискуссии [14].
Отметим, что иногда процесс формообразования на поверхности пленочного покрытия можно использовать для улучшения свойств электроприборов. Хорошо известно, что при определенных условиях роста и отжиге очень тонкая гетероэпитаксиальная пленка распадается на островки
наноразмера (состоящие из 103 —10^ атомов), называемые квантовыми точками [15]. Данные наноструктуры обладают необычными электрическими и оптическими свойствами, что позволяет разрабатывать на их основе совершенно новые микроэлектронные устройства, такие, как одноэлектронные транзисторы и квантовые полупроводниковые лазеры [16]. Все эти обстоятельства обуславливают большой интерес и стимулируют активность в области изучения формообразования на поверхности гетероэпитакс пал ьных пленочных покрытий.
Наиболее распространенной моделью волнообразования поверхности напряженного тела является модель потери устойчивости плоской формы поверхности в результате диффузионных процессов, происходящих в приповерхностном слое.
Заметим, что в классической механике деформируемых твердых тел закономерности процесса деформации изучались, как правило, без привлечения каких-либо конкретных представлений о существующей взаимосвязи механических и немеханических форм движения. Поэтому для количественного описания состояния деформируемой среды вводились
4
механические параметры состояния - тензоры деформации и напряжении
[17].
Современные тенденции развития механики деформируемых тел связаны с дальнейшим расширением свойств механических моделей путем учета различного рода немеханических видов и форм движения, существующих в реальных телах при их взаимодействии с окружающей средой. Таким образом, наряд)' с механическими, требуется введение некоторых дополнительных параметров состояния. Так, при рассмотрении процессов переноса массы в твердом теле на той или иной стадии приходится обращаться к представлениям о дискретном строении вещества. В частности, создание теоретических моделей кристаллических или поликристаляических тел затруднительно без учета структурных несовершенств типа вакансий, инородных частиц, примесей, а также несовершенств дислокационного характера, определяющих характер процесса диффузионного перемещения вещества [2].
Постановку вопроса о взаимосвязи процесса диффузии вещества и процесса деформации твердого тела связывают с работами [18, 19]. В дальнейшем этот вопрос рассматривался в исследованиях [20-25].
По-видимому, впервые теоретическое исследование морфологической неустойчивости твердого тела под действием напряжений было дано в работе [26], в которой рассматривалась устойчивость плоской поверхности, разделяющей напряженное твердое тело и жидкость, в геометрически линейной постановке. Было обнаружено, что плоская поверхность неустойчива по отношению к малым периодическим возмущениям, если длина волны возмущения больше некоторого критического значения, пропорционального отношению поверхностной энергии к упругой энергии деформации, вычисленной на поверхности. Этот факт был подтвержден затем в [27-29] для поверхности твердого тела, а также в [30, 31] при учете тонких пленочных покрытий. Необходимо отметить, что только в работах
[32, 33] выявлена чувствительность процесса волнообразования поверхности тела к изменению знака действующих напряжений. При этом поверхностная диффузия изучалась в однородном упругом материале при отсутствии пленочного покрытия.
Геометрически линейный анализ, проведенный в работах [26-33], лишь предсказывает экспоненциальный рост синусоидальной формы потери устойчивости в диапазоне длин волн, больших критического значения, и не позволяет проследить эволюцию рельефа поверхности. Напротив, в работе [34] рассмотрена аналитическая модель, которая охватывает некоторые особенности образования глубоких острых впадин. В данной модели, эволюция рельефа описывается семейством циклоид. Позднее, в работах [35-37] был предложен вариационный принцип, основанный на уравнениях неравновесной термодинамики, что позволило выявить более богатую динамику развития рельефа поверхности твердого тела.
В большинстве работ, аналогичных [26-33], анализ потери устойчивости поверхности основан на учете поверхностной диффузии, определяемой градиентом химического потенциала. Поверхностная диффузия является ведущим, но не единственным механизмом формирования рельефа поверхности [6, 8]. При высоких температурах благодаря капиллярному эффекту возникает движение атомов вглубь материала, т. е. в приповерхностном слое имеет место объемная диффузия, также влияющая на изменение формы поверхности тела. Эффект этого влияния зависит от уровня температуры и неоднородности распределения напряжений из-за искривления поверхности [38].
В работах [39, 40] представлено исследование влияния объемных и поверхностных диффузионных потоков на сглаживание рельефа твердого тела при отсутствии напряжений. Также следует отметить исследование [41], посвященное анализу эволюции синусоидального рельефа малой амплитуды под действием процесса диффузии, локализованного в приповерхностном
6
слое напряженного твердого тела. В данной работе рассматривалось влияние как поверхностной, так и объемной диффузии, но при этом не учитывалась толщина пленочного покрытия.
В работах [34, 37] было показано, что морфологические изменения поверхности напряженной тонкой пленки зачастую приводят к образованию острых впадин на поверхности пленочного покрытия. Такой дефект поверхности порождает локальный рост напряжений на дне впадин [4, 34] и способствует развитию механических повреждений в результате хрупкого разрушения или пластической деформации. Как уже было отмечено, термическая и эпитаксиальная несогласованность являются причиной возникновения в пленке достаточно больших напряжений (порядка 1-2,5 ГПа). При таком высоком уровне напряжений незначительное увеличение последних, вследствие поверхностной неоднородности, может инициировать процесс зарождения дислокаций и трещин [4, 34].
Таким образом, технология производства устройств микро- и оптоэлектроники на основе тонкопленочных гетероэпптаксиальных покрытий требует, чтобы присутствие в них подобного рода дефектов было сведено к минимуму. Для создания методики минимизации плотности распределения дефектов необходимо понимание процессов, приводящих к их появлению.
Цель работы. Различие между параметрами кристаллических решеток материалов пленки и подложки обуславливает появление в пленке напряжений несоответствия. Предполагается, что возникшее поле напряжений активирует массоперенос вдоль поверхности покрытия, а при высоких температурах - и вглубь материала пленки. Считается, что под действием диффузионных процессов происходит образование периодического рельефа поверхности пленки. Такой дефект поверхности порождает локальный рост напряжений на дне впадин. Таким образом,
7
- Київ+380960830922