СОДЕРЖАНИЕ
Введение.
Глава I. Методы численного дифференцирования функций дискретного
1.1. Численное дифференцирование временных рядов.
1.2. Анализ методов численного дифференцирования.
1.3. Некорректность задачи численного дифференцирования
1.4. Выводы
Глава II. Алгоритмы численного дифференцирования
детерминированных временных рядов в
2.1. Представление полиномиальных функций уравнениями в пространстве состояний
2.1.1. Представление полиномиальных функций в виде решения системы 4 л инейных дифференциальных уравнений.
2.1.2. Преобразование системы линейных дифференциальных уравнений к уравнениям в пространстве состояний.
2.1.3. Условия дифференцируемости полиномиальных функций и наблюдаемость уравнений состояний.
2.2. Оценка производных детерминированных временных рядов
Ф по результатам наблюдений.
2.3. Численное дифференцирование дискретных функций, аппроксимированных ортогональными полиномами
2.4. Выводы.
Глава III. Численное дифференцирование временных рядов при случайных ошибках измерений .
3.1. Фильтрация случайных помех по методу Калмана Бьюси.
3.2. Фильтр Калмана Бьюси с фиксированным запаздыванием.
3.3. Точность решения задачи численного дифференцирования.
3.4. Выводы.
Глава IV. Некоторые приложения методов численного дифференцирования временных рядов со случайными ошибками
4.1. Решение обратной задачи для источника примеси методами оптимальной фильтрации
4.2. Оценка скорости и ускорения движения снаряда по результатам наблюдений
4.3. Численное решение уравнений модифицированным методом Ньютона.
4.3. Численное решение уравнений модифицированным методом
Ньютона.
Выводы.
Заключение
Список использованных источников
- Київ+380960830922