Ви є тут

Інтервальне моделювання складних систем

Автор: 
Бойко Олексій Романович
Тип роботи: 
Дис. канд. наук
Рік: 
2007
Артикул:
0407U001484
129 грн
Додати в кошик

Вміст

РОЗДІЛ 2
РОЗРОБКА І АЛГОРИТМІЗАЦІЯ ІНТЕРВАЛЬНИХ МОДЕЛЕЙ ТИПОВИХ ФУНКЦІОНАЛЬНИХ ПЕРЕТВОРЮВАЧІВ СКЛАДНИХ СИСТЕМ
У даному розділі розглядаються питання побудови і алгоритмізації аналітичних інтервальних моделей типових функціональних перетворювачів і елементів складних систем. Для розв'язку цієї задачі необхідно виділити окремі класи перетворювачів і формалізувати перетворення в них інформативних параметрів вимірювальних сигналів. Алгоритмізація розроблених моделей потребує використання інтервальної арифметики та інтервального розширення і звуження. Дослідження, що проводяться, орієнтовані на розробку високоефективних збіжних стійких алгоритмів для машинного аналітичного інтервального моделювання.
2.1. Класифікація функціональних перетворень в складних системах
Існує велика кількість різних варіантів побудови складних систем. Це зумовлено тим, що в сучасних складних системах реалізується багато видів та типів інформативних процедур в різних умовах проведення експерименту. Також до результатів експерименту та до методів їх обробки висуваються різні вимоги в відповідності до галузі застосування складної системи [4,12]. Найбільш раціональним методом проектування складної системи є агрегатно-блочна побудова системи [65]. Згідно цього методу система будується зі стандартного набору уніфікованих функціональних елементів та блоків, тобто з таких, що мають регламентовані (задані або розраховані) та нормовані метрологічні, експлуатаційні, конструктивні та інші характеристики, що дозволяють їх сумісне функціонування в системі [39]. Базою для агрегатно-блочного підходу є припущення, що процес виміру (контролю, діагностики та інше) може бути представлений як поєднання певного ряду послідовних вимірювальних операцій. У відповідності до цього складна система - це поєднання з'єднаних між собою певним чином вимірювальних функціональних перетворювачів - пристроїв, в яких реалізується функціональний зв'язок між вхідними та вихідними сигналами. Види функціональних перетворювачів необхідно визначати в залежності від перетворень інформативних параметрів, що відбуваються в них. В залежності від цього один або інший перетворювач може виконувати різні перетворення з різними інформативними параметрами. Наприклад, реальна підсистема підсилення відповідно реалізує динамічне перетворення амплітуди сигналу. Але ця ж система може розглядатись як лінія затримки, якщо інформативний параметр - час приходу імпульсу.
Функціональні перетворювачі, в залежності від виду перетворень, що відбуваються в них, можливо поділити на наступні групи [54,61]:
- аналогові перетворювачі. Подібні перетворювачі реалізують перетворення аналогової величини Х (простори стану та часу континуальні) в аналогову вихідну величину [31];
- перетворювачі виду величини, які проводять дискретизацію, квантування вхідної величини, тобто в узагальненому випадку аналого-цифрове перетворення (АЦП) аналогової вхідної величини Х в цифрову вихідну величину У (простори стану обмежені, а час дискретний) та зворотне цифрово-аналогове перетворення [5,52];
- цифрові перетворювачі, які реалізують перетворення вхідної цифрової величини Х в вихідну цифрову величину Y. В свою чергу аналогові перетворювачі можуть бути поділені на статистичні та динамічні, лінійні та нелінійні перетворювачі [61].
В більшості випадків до аналогових перетворювачів відносять датчики (первині вимірювальні перетворювачі) [75], які перетворюють величину, що виміряли, в вимірювальний сигнал з інформативним параметром, що функціонально пов'язаний з величиною, що вимірюється [54]. Аналогові перетворювання реалізуються в багатьох пристроях попередньої обробки сигналів, а в деяких ІВС ще і в пристроях представлення результату. Реальні АЦП та ЦАП використовують різні способи і крім самого перетворення виду величини можуть в своєму складі мати додаткові пристрої. Але врахування цих додаткових пристроїв при побудові математичних моделей залежить від рівня деталізації моделі. Найбільш поширеними видами цифрових перетворювань є наступні:
- алгоритмічні перетворювачі, що слугують для опису ЕОМ та інших цифрових обчислювальних пристроїв;
- цифрові динамічні перетворювачі (цифрові фільтри, автомати);
- перетворювачі кодів та масштабно-часові перетворювачі.
Багато з них являють собою комбінацію елементарних перетворювачів та за своїм змістом є підсистемами складних систем.

2.2. Розробка інтервальних моделей статичних аналогових перетворювачів
До групи статичних аналогових перетворювачів відносять елементи, в яких час перехідних процесів настільки маленький в порівнянні зі швидкістю зміни вхідної величини, що їх динамічними властивостями можливо знехтувати. До цієї групи відносять такі елементи як датчики, детектори, обмежувачі амплітуди та інші. При аналізі подібного перетворювача можливо обмежитись описом його в вигляді статичної нелінійної характеристики перетворення, що зв'язує вхідну та вихідну величини [49]:

, (2.1)
де, Y - вихідний сигнал, інакше кажучи результат, Х - вхідний параметри, - функція перетворення вхідного сигналу в вихідний.
В найпростішому випадку, характеристика статичного аналогового перетворювача лінійна, та має вигляд поліному першого ступеню:

. (2.2)
Групу статичних аналогових перетворювачів в свою чергу можна поділити на кілька підгруп [49,54,61]:
a) лінійні або нелінійні перетворювачі, а серед нелінійних виділимо наступні:
- нелінійні мостові, компенсаційні та інші;
- нелінійні частотні, фазові та інші;
- нелінійні з характеристикою типу "обмеження";
- нелінійні з характеристикою типу "зону нечутливості";
б) одновимірні або багатовимірні, в залежності від кількості вхідних величин, що надходять в перетворювач для формування значення результату;
в) стаціонарні та нестаціонарні, в залежності від виду перетворення, що реалізується в перетворювачі.
Лінійні перетворювачі мають за свою характеристику перетворення лінійні функції, тобто в більшості випадків п