ОГЛАВЛЕНИЕ
Введение.................................................................4
Глава 1. Краткий литературный обзор по исследованию висмута и сплавов
висмут-сурьма...................................................9
1.1. Кристаллическая структура висмута и сплавов висмут-сурьма..........9
1.2. Зона Бриллюэна и энергетический спектр висмута....................12
1.3. Поверхность Ферми носителей заряда в висмуте и дополнительные экстремумы в валентной зоне........................................17
1.4. Перестройка энергетического спектра сплавов висмут-сурьма при изменении состава..................................................20
1.5. Законы дисперсии носителей заряда в висмуте и сплавах висмут-сурьма......................................................23
1.5.1. Закон дисперсии носителей заряда в точках Ь ЗБ..............23
1.5.2. Закон дисперсии носителей заряда в точках Т ЗБ..............28
1.6. Исследование сплавов висмут-сурьма с помощью явлений переноса
в температурном интервале 4+80 К...................................29
1.7. ФононныЙ спектр и теплоёмкость висмута............................33
Глава II. Некоторые вопросы теории явлений переноса....................37
2.1. Феноменологическая теория явлений переноса в кристаллах типа висмута............................................................37
2.2. Электронная теория явлений переноса в кристаллах типа висмута 40
2.3. Методы определения эффективной массы плотности состояний электронов (дырок).................................................45
2.4. Механизмы рассеяния носителей заряда в твердых телах..............47
2.4.1. Рассеяние носителей заряда на ионах примеси.................48
2.4.2. Рассеяние носителей заряда на акустических фононах..........50
2.4.3. Рассеяние носителей заряда на нейтральной примеси...........51
2.4.4. Рассеяние на точечных дефектах.............................52
2.5. Фононная теплопроводность и механизмы релаксации фононов.........52
Глава III. Методика эксперимента......................................56
3.1. Технология выращивания монокристаллических слитков сплавов
на основе висмута и приготовление образцов........................56
3.2. Прибор для исследования явлений переноса при низких температурах......................................................60
3.3. Измерительная схема..............................................62
3.4. Гальваномагнитные измерения......................................66
3.5. Термоэлектрические и термомагнитные измерения....................67
3.6. Измерение теплопроводности и температуры.........................69
Глава IV. Экспериментальные результаты и их обсуждение................74
4.1. Гальваномагнитные явления........................................74
4.2. Фононная теплопроводность висмута слаболегированного донорной примесью теллура при Т<30 К.......................................84
4.3. Фононная теплопроводность сплавов Bi|_xSbx (0.01<х<0.17)
при Т<20 К........................................................94
4.4. Фононная теплопроводность сплавов Bij_xSbx (0.035<х<0.19)
в интервале температур 20<Т<95 К..........................................108
4.5. Фононная термоэдс Bi слаболегированного Те при Т<30 К...........116
4.6. Электрон-фононное увлечение в сплавах Bij-xSbxTe (0.13<х<0.15)..128
4.7. Влияние классически сильного магнитного поля на термоэдс фононного увлечения в полупроводниковых сплавах Bi-Sb............140
4.8.Термоэлектрическая добротность сплавов висмут-сурьма.............150
Заключение...........................................................155
Библиографический список использованной литературы...................160
ВВЕДЕНИЕ
Висмут и его бинарные сплавы с сурьмой являются наиболее типичными представителями полуметаллов и узкозонных полупроводников. Уникальные физические свойства, связанные с особенностями энергетического спектра носителей заряда и возможностью его плавной перестройки, обуславливают практический интерес к изучению этих материалов.
Сплавы Вп-х8Ьх с ростом концентрации сурьмы переходят из полуметаллического состояния (0<х<0.07) в полупроводниковое (0.07<х<0.22). Малые характерные энергии и эффективные массы плотности состояний носителей заряда в зоне проводимости и валентной зоне висмута и сплавов В1-8Ь позволяют при легировании их электрически активными примесями значительно смещать по энергии уровень Ферми, что позволяет менять вклады актуальных энергетических экстремумов в явления переноса. Эти факторы обуславливают необычную чувствительность висмута и его сплавов к внешним воздействиям: изменению температуры, давления, магнитного и электрического полей и т.д. При этом представляет практический интерес исследование механизмов рассеяния носителей заряда и фононов в сплавах со сложным энергетическим и фононным спектром, что является фундаментальной проблемой физики В1 и сплавов В1-8Ь.
Одним из наиболее широко применяющихся методов воздействия на свойства висмута и его сплавов висмут-сурьма является легирование активной примесью, которое позволяет изучать зонную структуру в широком энергетическом интервале и оптимизировать параметры чувствительных элементов приборов. Висмут и его сплавы с сурьмой находят практическое применение в качестве чувствительных болометров, тензометров и измерителей магнитных полей, а также используются для создания рабочих
элементов термоэлектрических и анизотропных преобразователей энергии. Сплавы висмут-сурьма п-типа дают высокое значение термоэлектрической добротности для п-ветви в интервале температур 40<Т<130 К.
Экспериментальному исследованию явлений переноса в висмуте и сплавах висмут-сурьма способствует технологичность материала: низкие температуры плавления, хорошо отработанные методы очистки от примесей и выращивания совершенных монокристаллов.
Важность и фундаментальность проблемы физики В1 и сплавов В1-8Ь и определяют актуальность темы диссертационной работы как с научной, так и с практической точки зрения.
Целью диссертационной работы являлось изучение взаимодействия электронов и фононов при низких температурах в сплавах на основе висмута методом совместного анализа явлений теплопроводности и термоэдс. Дня этого были решены следующие основные задачи:
1. В висмуте два сорта носителей электроны и дырки, поэтому представляет интерес исследование влияния раскомпенсации системы носителей заряда на величину и характер температурных зависимостей фононной составляющей термоэдс и фононной теплопроводности электронного висмута.
2. Выяснение влияния перенормировки времени релаксации фононов Ы-процессами на температурные зависимости фононной теплопроводности и термоэдс висмута слабо легированного теллуром при Т<30 К.
3. Проведение совместного анализа температурных зависимостей фононной теплопроводности и фононной термоэдс сплавов на основе висмута в зависимости от концентрации примесных электронов.
4. Определение термоэлектрической добротности сплавов В^8Ь для п-ветви.
Объектами исследования являлись монокристаллы В\ слаболегированного электрически активной примесью теллура (с концентрацией теллура до 0.2 ат%) и сплавы Вц Х8ЬХ состава 0<х<0.19 как чистые, так и легированные доиорными (Те) и акцепторными (8п) примесями. Легирование контролируемой примесью полупроводниковых сплавов В1-8Ь приводило к увеличению концентрации носителей заряда от ^1014 см 3 до =1019 см 3, а в В! от 31017 см 3 до =Т019 см 3. Используя современные методы выращивания, были приготовлены монокристаллические слитки сплавов заданного состава, из которых вырезались элсктроэрозионным способом образцы с гранями, ориентированными вдоль основных кристаллографических осей (С\, С2,Сз).
В работе использовался метод комплексного исследования анизотропных свойств сплавов с помощью измерения кинетических явлений переноса заряда и тепла: электрических и гальваномагнитных (на постоянном токе в стационарных магнитных полях), теплопроводности, термоэлектрических и термомагнитных эффектов (при стационарном тепловом потоке и в постоянных магнитных полях) в широком интервале температур и магнитных полей. Висмут (в природе состоит из одного стабильного изотопа 209В1) и сплавы В1-БЬ являются хорошими объектами для исследования закономерностей фононной теплопроводности в зависимости от концентрации изовалентной примеси сурьмы, температуры и концентрации примесных носителей заряда.
Научная новизна работы заключается в том, что впервые проведен совместный комплексный анализ явлений переноса электронов и фононов на кристаллах ВЬ-Те и кристаллах сплавов Вц-х8Ьх в широких интервалах легирования как изовалентной БЬ (0<х<0.15), так и электрически активной примесью Те до 0.3 ат%. Из совместного анализа температурных зависимостей фононной теплопроводности и фононной термоэдс
установлены концентрационные рамки двухступенчатого и одноступенчатого эффектов увлечения электронов фононами в кристаллах Вь'Ге, а также наличие неполного одноступенчатого увлечения электронов фононами в сплавах В1-8Ь легированных теллуром.
Установлены две экспоненциальные закономерности в температурной зависимости для фононной теплопроводности сплавов Вь$Ь с различной концентрации носителей заряда.
Практическая ценность заключается в том, что достигнутое понимание поведения фононной термоэдс и теплопроводности в сплавах ВьТе и В1-5Ь позволяет надежно оценить термоэлектрическую эффективность этого материала в интервале 40<Т<80 К ^тах^-КГ3 К-1) в плане практического применения, и предсказать поведение явлений переноса (схф и Яф) в других кристаллах при постановке научных исследований и решении задач практического характера.
На защиту выносятся следующие результаты диссертационной работы:
1. Установлено, что в сплавах ВьТе, при малых уровнях легирования, существует переходная область увлечения электронов фононами от двухступенчатого к одноступенчатому, а температурные зависимости 0Сф(Т) и Хф(Т) определяются одной и той же частотой релаксации импульсов фононов, перенормированной Ы-процессами. При этом температурные зависимости фононной теплопроводности и фононной гермоэдс при увеличении вклада фонон-примесного рассеяния переходят из экспоненциальных в степенные. В сильнолегированных теллуром сплавах, где преобладает фонон-примесное рассеяние, увлечение электронов осуществляется тепловыми фононами и носит одноступенчатый характер.
2. Показано, что в сплавах Вц_х8Ь*Те (0.13<х<0.15) увлечение электронов фононами носит одноступенчатый характер и является неполным. При малых уровнях легирования теллуром, увлечение электронов
осуществляется дотепловыми фононами, класс которых сравнивается с тепловыми при больших уровнях легирования.
3. Установлено, что фононная термоэдс в сильном магнитном поле имеет значительную величину по сравнению с фононной термоэдс в нулевом магнитном поле и определяется степенью вырождения системы носителей заряда. Показано, что циклическое движение электронов в магнитном поле расширяет класс фононов взаимодействующих с электронами до тепловых, и это позволяет объяснить наблюдаемые температурные зависимости а£(Т) в сплавах Вц-^Ьх (х=0.135*0.015) с различной концентрацией примесных носителей заряда.
4. Для всех сплавов Вц_х5Ьх (0.035<х<0.19) в интервазе температур 20<Т<95 К на температурных зависимостях фононной теплопроводности наблюдаются два экспоненциальных участка, наличие которых предположительно обусловлено вымораживанием и-процессов с участием акустических (0ах=43 К) и оптических (0От=13О К) фононов. Независимо от кристаллографической ориентации образца, фононную теплопроводность таких сплавов можно описать зависимостями Кф(Т)-Т1ехр43/Т (20<Т<40 К) и Нф(ТЬТ'ехр130/1.25Т (45<Т<95 К).
ГЛАВА I
КРАТКИЙ ЛИТЕРАТУРНЫЙ ОБЗОР ПО ИССЛЕДОВАНИЮ ВИСМУТА И СПЛАВОВ ВИСМУТ-СУРЬМА
1.1. Кристаллическая структура висмута и сплавов
висмут-сурьма
Элементы пятой группы таблицы Д.И. Менделеева В1 и 5Ь образуют непрерывный ряд твердых растворов замещения. Кристаллическая структура В1, БЬ и твердых растворов на их основе однотипна [1]. По своим параметрам решетка этих веществ незначительно отличается от простой кубической и может быть получена из нее с помощью двух малых деформаций [2, 3, 4]: сдвигом двух гранецентрированных подрешеток относительно друг' друга вдоль пространственной диагонали куба и слабым растяжением подрешеток вдоль той же самой диагонали (рис. 1.1). Деформации понижают симметрию решетки до точечной групп ЯЗш, элементы симметрии которой представлены на рис. 1.2.
Элементарную ячейку типа висмута можно выбрать тремя способами (рис. 1.3) [5, 6]:
1. В виде ромбоэдра, незначительно отличающегося от куба, с гранями {100}. Такая ячейка содержит восемь атомов и ее период равен а=6,57 А.
2. В виде ромбоэдра с ребрами [101], [110], [011] и гранями, образованными плоскостями {111}. Такая ромбоэдрическая элементарная ячейка характеризуется параметрами а, а, и, где а - длина ребра, а -тригональный угол, 2и - минимальное расстояние между двумя соседними атомами вдоль оси в единицах диагонали. В каждом узле расположены два атома, координаты которых ±(и,и,и). Параметры такой ячейки для В1 и БЬ даны в работах [7, 8].
Рис.1.1. Схема построения решетки кристаллов типа В1 из двух гранецентрированных подрешеток куба с последующей деформацией их вдоль пространственной диагонали.
Рис. 1.2. Элементы симметрии точечной группы К 3 т.
Рис. 1.3. Элементарные ячейки решетки типа В\.
11
3. В виде гексагональной ячейки, которая содержит шесть атомов и характеризуется параметрами а и с - ребрами элементарной ячейки. Недостатком выбора такой ячейки является наличие оси 6-го порядка, не свойственной решетке веществ типа Вт
При любом выборе элементарная ячейка содержит четное число атомов. Параметры элементарных ячеек В! и 5Ь приведены в таблице 1.1.
Параметры кристаллической решетки твердых растворов висмут-сурьма зависят от содержания сурьмы в сплаве [7, 9]. Причем до 30 ат% сурьмы в висмуте параметры а и с гексагональной ячейки меняются линейно, то есть выполняется закон Вегарда:
а=4.546-23.84-1СГ 4х,
с=11.863-5.66-10
а=4.534-21.92-1 СГ4х, с=1 1.814-48.75-10"4х,
с= 11.803-40.75- 10‘4х, Т=4.2 К,
где х - концентрация сурьмы в атомных процентах, а и с выражены в ангстремах. Позднее было указано на незначительное отклонение от линейной зависимости параметра с(х) при гелиевых температурах [1].
Таблица 1.1
Параметры элементарных ячеек висмута и сурьмы
Т=298 К
Т=78 К
*
Элемент Вид элементарной ячейки
псевдокуб ромбоэдр гексагон
В1 а=87.340 а=6.572-10"'°м 0=57.14° а=4.746 10'|0м с=11.863-10'"10м с/а=2.609
БЬ . а=87.22° 8=6.237 10 10 м а=57.07о а=4.5И0~'°м с=11.283-Ю10 м с/а=2.610
Кристаллы типа В1 имеют сложную структуру. В каждом слое В1 атомы располатются в двух параллельных плоскостях перпендикулярной оси Сз так, что имеют трех ближайших соседей, находящихся в одной плоскости и трех более удаленных в другой плоскости. Такое сложное расположение атомов приводит к сильной анизотропии свойств веществ типа Вг. электрических, тепловых, механических и т.д. Химические связи имеют сложную структуру и недостаточно изучены. Считают, что связь внутри слоев ковалентная [10], а связь между соседями имеет смешанный характер, частично Ван-дер-Ваальсовского, частично обменно-поляризационного типа [11]. Особенности сил связи обуславливают малую растворимость (0.5^-1 ат%) в В1 и сплавах Вь8Ь изовалентных примесей Р и Аб, а также ближайших соседей IV и VI групп РЬ, Бп, Те, 8е [12, 13, 14].
Для веществ типа В1 используют следующую кристаллографическую систему ортогональных координат (Сь С2, Сз). Оси х(1) и у(2) параллельны соответственно бинарной (С2) и биссекторной (С1) осям, причем последняя образуется пересечением зеркальной плоскости с базисной плоскостью {111}. Ось 2(3) ориентирована вдоль оси 3-го порядка (Сз), которая образована пересечением зеркальных плоскостей.
1.2. Зона Брнллюэна и энергетический спектр висмута
Первая зона Бриллюэна (ЗБ) для решетки типа В1 изображена на рис.1.4 [15]. Объем этой зоны ограничен следующими тремя типами плоскостей [16]:
1. Шесть плоскостей (1,0,0), (0,1,0), (0,0,1), (Т,0,0), (0,1,0), (1,0,0,) образуют псевдогексагональные грани. Они находятся на расстоянии Ь/2 от начала координат.
Рис. 1.4. Зона Бриллюэна висмута.
Рис. 1.5. Расширенная зона Бриллюэна (зона Джонса) для висмута.
2. Шесть плоскостей (0,1,1)» (1,0,1), (1,1,0), (0,1,1), (1,0,1), (1,1,0) образует четырехугольные грани, находящиеся на расстоянии (Ь/>/2 )*(1+со8р),;2 от начала координат.
3. Две плоскости (1,1,1), (1,1,1), перпендикулярные к оси С3, образуют правильные шестиугольные грани и находятся на расстоянии
(л/з/гуц+совр)1/2. Для В1 р=110°32*.
Точки симметрии зоны обозначены буквами Ь, и, X, /, Т, Г.
Первая ЗБ содержит два электрона на атом, так как элементарная ячейка имеет два пятивалентных атома и, в результате, 10 электронов заполняют пять зон Бриллюэна.
Джонс [16] разработал метод больших ЗБ, включающих в себя все валентные состояния (рис. 1.5). Расширенная ЗБ ограничена шестью вертикальными плоскостями (0,1,1), (1,0,1), (0,1,1), (1,0,1), (1,1,0), (1,1,0) и шестью плоскостями наклоненными к вертикали (2,2,1), (2,1,2), (1,2,2), (2,2,1), (2,1,2), (1,2,2). Десяти валентных электронов достаточно для заполнения расширенной ЗБ и в этом случае В\ был бы диэлектриком. Однако В\ и БЬ являются полуметаллами. Причиной этого является перекрытие пятой и шестой ЗБ в направлении минимального расстояния от граней до центра зоны (вблизи точек типа В). В результате перетекания части электронов из 5-ой зоны в 6-ую, в последней появляются электроны, а в 5-ой зоне образуется равное число незанятых состояний - дырок. Продолжительное время оставался нерешенным вопрос о том, в каких точках симметрии ЗБ локализованы носители заряда ВБ Мазе [17] провел расчеты вдоль линий ГТ и ГЬ в приближении сильной связи и пришел к выводу, что наиболее подходящими областями для нахождения энергетических экстремумов являются точки Ь и Т приведенной ЗБ.
Окончательно этот вопрос был решен в результате расчетов зонной структуры [18], исследования квантовых осцилляции [19, 20] и измерения гальваномагнитных эффектов [21]. Феррейра [18], используя метод присоединенных плоских волн, провел расчеты и сравнил результаты с экспериментом [22]. Оказалось, что электроны расположены в Ь, а дырки в Т точках ЗБ. Общая картина зонной структуры висмута была рассчитана Голиным [23] методом псевдопотенциала. Параметры подгонялись так, чтобы удовлетворить имеющимся экспериментальным данным для Вь Точность расчета таким методом невелика и почти на порядок превосходит характерные энергии спектра В1, но тем не менее результаты расчета выявили следующие особенности энергетического спектра:
1. В точке Ь кроме термов Б* и Ьа существуют еще два терма выше энергии Ферми и два ниже, которые нужно учитывать при детальном анализе спектра.
2. В точках Т расстояние от потолка валентной зоны (Т"5) до ближайшего вышележащего терма Т*, составляет -0.1 ■*-+().5 эВ. В других
точках существует ряд дополнительных экстремумов и, в частности, заполненный дырочный экстремум вблизи ТОЧКИ р.
Другим более точным методом, позволяющим получить общую картину энергетического спектра висмута (рис. 1.6), а также законы дисперсии носителей в точках Ь и Т, является деформационная теория, разработанная Абрикосовым и Фальковским [2]. Отправным моментом этой теории является возможность получения пространственной решетки висмута посредством деформации двух кубических гранецентрированных подрешеток. При сравнении теории с экспериментом, используя подгонку параметров, авторам работы [24] удалось достичь согласия в пределах 10 %.
Исследования энергетического спектра сурьмы [25] показали, что экстремумы энергии электронов локализованы в точках Б ЗБ, а экстремумы
- Киев+380960830922